Với giải Bài 6 trang 39 Chuyên đề Toán 10 Chân trời sáng tạo chi tiết trong Bài 2: Nhị thức Newton giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 10. Mời các bạn đón xem:
Giải bài tập Chuyên đề Toán lớp 10 Bài 2: Nhị thức Newton
Bài 6 trang 39 Chuyên đề Toán 10: Biết rằng (3x – 1)7 = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + a7x7.
a) a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7;
b) a0 + a2 + a4 + a6.
Lời giải:
Có (3x – 1)7
= 2187x7 – 5103x6 + 5103x5 – 2835x4 + 945x3 – 189x2 + 21x – 1.
a) a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7
= (–1) + 21 + (–189) + 945 + (–2835) + 5103 + (–5103) + 2187 = 128.
b) a0 + a2 + a4 + a6
= (–1) + (–189) + (–2835) + (–5103) = –8128.
Xem thêm các bài giải Chuyên đề Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Thực hành 1 trang 35 Chuyên đề Toán 10: Hãy khai triển:
Khám phá 2 trang 35 Chuyên đề Toán 10: Từ các công thức khai triển:
Thực hành 2 trang 37 Chuyên đề Toán 10: Sử dụng tam giác Pascal, hãy khai triển:
Thực hành 3 trang 38 Chuyên đề Toán 10: Xác định hệ số của x2 trong khai triển (3x + 2)9
Thực hành 5 trang 38 Chuyên đề Toán 10: Chứng minh rằng, với mọi n∈ ℕ*, ta có
Bài 1 trang 39 Chuyên đề Toán 10: Khai triển biểu thức:
Bài 2 trang 39 Chuyên đề Toán 10: Tìm hệ số của x10 trong khai triển của biểu thức (2 – x)12
Bài 7 trang 39 Chuyên đề Toán 10: Một tập hợp có 12 phần tử thì có tất cả bao nhiêu tập hợp con?
Bài 8 trang 39 Chuyên đề Toán 10: Từ 15 bút chì màu có màu khác nhau đôi một,