Chuyên đề Toán 10 Bài 1: Phương pháp quy nạp toán học | Chân trời sáng tạo

15.5 K

Tailieumoi.vn giới thiệu giải bài tập Chuyên đề Toán 10 Bài 1: Phương pháp quy nạp toán học sách Chân trời sáng tạo hay, chi tiết giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề học tập Toán 10. Mời các bạn đón xem:

Giải bài tập Chuyên đề Toán 10 Bài 1: Phương pháp quy nạp toán học

Khởi động trang 27 Chuyên đề Toán 10: Trong một trò chơi domino, các quân domino được xếp theo thứ tự từ quân đầu tiên đến quân cuối cùng. Biết rằng xảy ra hai điều sau:

1) Quân domino đầu tiên đồ;

2) Nếu quân thứ k đồ thì quân thứ k + 1 đổ.

Có thể kết luận rằng tất cả các quân domino đều đổ không? Hãy giải thích.

Lời giải:

Có thể kết luận rằng tất cả các quân domino đều đổ. Vì: quân domino đầu tiên đổ thì sử dụng 2) ta có quân domino thứ 2 cũng đổ, quân domino thứ 2 đổ thì lại tiếp tục sử dụng 2) suy ra quân domino thứ 3 cũng đổ,...cứ như vậy quân domino cuối cùng cũng đổ. Do đó tất cả các quân domino đều đổ.

1. Phương pháp quy nạp toán học

Khám phá 1 trang 27 Chuyên đề Toán 10: Bằng cách tô màu trên lưới ô vuông như hình dưới đây, một học sinh phát hiện ra công thức sau:

Khám phá 1 trang 27 Chuyên đề Toán 10

1 + 3 + 5 + 7 +... + (2n – 1) = n2. (1)

a) Hãy chỉ ra công thức (1) đúng với n = 1, 2, 3, 4, 5.

b) Từ việc tô màu trên lưới ô vuông như Hình 1, bạn học sinh khẳng định rằng công thức (1) chắc chắn đúng với mọi số tự nhiên n ≥ 1. Khẳng định như vậy đã thuyết phục chưa? Tại sao?

Lời giải:

a) Với n = 1, ta có 2.1 – 1 = 1 = 12, do đó công thức (1) đúng với n = 1.

Với n = 2, ta có 1 + (2.2 – 1) = 4 = 22, do đó công thức (1) đúng với n = 2.

Với n = 3, ta có 1 + 3 + (2.3 – 1) = 9 = 32, do đó công thức (1) đúng với n = 3.

Với n = 4, ta có 1 + 3 + 5 + (2.4 – 1) = 16 = 42, do đó công thức (1) đúng với n = 4.

Với n = 5, ta có 1 + 3 + 5 + 7 + (2.5 – 1) = 25 = 52, do đó công thức (1) đúng với n = 5.

b) Mỗi lần tô thêm một hàng và cột những ô vuông, bạn học sinh đã kiểm nghiệm công thức (1) thêm một trường hợp của n. Tuy nhiên, bới tập hợp ℕ* là vô hạn nên cách làm đó không thể chứng tỏ công thức (1) đúng với mọi n ∈ ℕ*.

Thực hành 1 trang 29 Chuyên đề Toán 10: Chứng minh rằng đẳng thức sau đúng với mọi n*

1+2+3++n=n(n+1)2.

Lời giải:

Bước 1. Với n = 1, ta có 1 = 1(1+1)2. Do đó đẳng thức đúng với n = 1.

Bước 2. Giả sử đẳng thức đúng với n = k ≥ 1, nghĩa là có: 1+2+3++k=k(k+1)2.

Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:

1+2+3++k+(k+1)=(k+1)[(k+1)+1]2.

Sử dụng giả thiết quy nạp, ta có:

+k+(k+1) =k(k+1)2+2(k+1)2=(k+1)(k+2)2=(k+1)[(k+1)+1]2.

Vậy đẳng thức đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, đẳng thức đúng với mọi số tự nhiên n  1.

Thực hành 2 trang 29 Chuyên đề Toán 10: Chứng minh rằng bất đẳng thức sau đúng với mọi số tự nhiên n ≥ 3: 2n + 1 > n2 + n + 2

Lời giải:

Bước 1. Với n = 3, ta có 23 + 1 = 16 > 14 = 32 + 3 + 2. Do đó bất đẳng thức đúng với n = 3.

Bước 2. Giả sử bất đẳng thức đúng với n = k ≥ 3, nghĩa là có: 2k + 1 > k2 + k + 2.

Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:

2(k +1) + 1 > (k + 1)2 + (k + 1) + 2.

Sử dụng giả thiết quy nạp, với lưu ý k ≥ 3, ta có:

2(k +1) + 1 = 2 . 2k + 1 > 2(k2 + k + 2) = 2k2 + 2k + 4 = k2 + k2 + 2k + 4 > k2 + k + 2k + 4

= (k2 + 2k + 1) + (k + 1) + 2 = (k + 1)2 + (k + 1) + 2.

Vậy bất đẳng thức đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, bất đẳng thức đúng với mọi số tự nhiên n  3.

2. Ứng dụng phương pháp quy nạp toán học

Thực hành 3 trang 31 Chuyên đề Toán 10: Chứng minh rằng n3 + 2n chia hết cho 3 với mọi n*

Lời giải:

Bước 1. Với n = 1, ta có 13 + 2 . 1 = 3 ⁝ 3. Do đó khẳng định đúng với n = 1.

Bước 2. Giả sử khẳng định đúng với n = k ≥ 1, nghĩa là có: k3 + 2k ⁝ 3.

Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:

(k + 1)3 + 2(k + 1) ⁝ 3.

Sử dụng giả thiết quy nạp, ta có:

(k + 1)3 + 2(k + 1) = k3 + 3k2 + 3k + 1 + 2k + 2 = (k3 + 2k) + (3k2 + 3k + 3)

Vì (k3 + 2k) và (3k2 + 3k + 3) đều chia hết cho 3 nên (k3 + 2k) + (3k2 + 3k + 3) ⁝ 3 hay (k + 1)3 + 2(k + 1) ⁝ 3.

Vậy khẳng định đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, khẳng định đúng với mọi số tự nhiên n ≥ 1.

Thực hành 4 trang 31 Chuyên đề Toán 10: Chứng minh rằng đẳng thức sau đúng với mọi n*

1+q+q2+q3+q4++qn-1=1-qn1-q(q1).

Lời giải:

Bước 1. Với n = 1, ta có q1 – 1 = q0 = 1 = 1-q1-q=1-q11-q. Do đó đẳng thức đúng với n = 1.

Bước 2. Giả sử đẳng thức đúng với n = k ≥ 1, nghĩa là có:

1+q+q2+q3+q4++qk-1=1-qk1-q.

Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:

1+q+q2+q3+q4++qk-1+q(k+1)-1=1-qk+11-q.

Sử dụng giả thiết quy nạp, ta có:

1+q+q2+q3+q4++qk-1+q(k+1)-1

=1-qk1-q+q(k+1)-1=1-qk1-q+qk=1-qk+qk(1-q)1-q=1-qk+qk-qk+11-q

=1-qk+11-q.

Vậy đẳng thức đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, đẳng thức đúng với mọi số tự nhiên n ≥ 1.

Thực hành 5 trang 31 Chuyên đề Toán 10: Chứng minh rằng trong mặt phẳng, n đường thẳng khác nhau cùng đi qua một điểm chia mặt phẳng thành 2n phần (n*)

Lời giải:

Bước 1. Với n = 1, ta có rõ ràng một đường thẳng chia mặt phẳng thành 2 phần.

Bước 2. Giả sử khẳng định đúng với n = k ≥ 1, nghĩa là có: k đường thẳng khác nhau đi qua một điểm chia mặt phẳng ra thành 2k phần.

Ta cần chứng minh khẳng định đúng với n = k + 1, nghĩa là cần chứng minh: (k + 1) đường thẳng khác nhau đi qua một điểm chia mặt phẳng ra thành 2(k + 1) phần.

Sử dụng giả thiết quy nạp, ta có:

Nếu dựng đường thẳng đi qua điểm đã cho và không trùng với đường thẳng nào trong số những đường thẳng còn lại, thì ta nhận thêm 2 phần của mặt phẳng. Như vậy tổng số phần mặt phẳng là của 2k cộng thêm 2 , nghĩa là 2(k + 1).

Vậy khẳng định đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, khẳng định đúng với mọi số tự nhiên n ≥ 1.

Vận dụng trang 31 Chuyên đề Toán 10: (Công thức lãi kép) Một khoản tiền A đồng (gọi là vốn) được gửi tiết kiệm có kì hạn ở một ngân hàng theo thể thức lãi kép (tiền lãi sau mỗi kì hạn nếu không rút ra thì được cộng vào vốn của kì kế tiếp). Giả sử lãi suất theo kì là r không đổi qua các kì hạn, người gửi không rút tiền vốn và lãi trong suốt các kì hạn đề cập sau đây. Gọi Tn là tổng số tiền vốn và lãi của người gửi sau kì hạn thứ n (n∈ℕ*)

a) Tính T1, T2, T3.

b) Từ đó, dự đoán công thức tính Tn và chứng minh công thức đó bằng phương pháp quy nạp toán học.

Lời giải:

a)

– Tổng số tiền (cả vốn lẫn lãi) T1 nhận được sau kì thứ 1 là:

T1 = A + Ar = A(1 + r).

– Tổng số tiền (cả vốn lẫn lãi) T2 nhận được sau kì thứ 2 là:

T2 = A(1 + r) + A(1 + r)r = A(1 + r)(1 + r) = A(1 + r)2.

– Tổng số tiền (cả vốn lẫn lãi) T3 nhận được sau kì thứ 3 là:

T3 = A(1 + r)2 + A(1 + r)2r = A(1 + r)3.

b) Từ câu a) ta có thể dự đoán Tn = A(1 + r)n.

Ta chứng minh bằng quy nạp toán học.

Bước 1. Với n = 1 ta có T1 = A(1 + r) = A(1 + r)1.                                   

Như vậy khẳng định đúng cho trường hợp n = 1.

Bước 2. Giả sử khẳng định đúng với n = k ≥ 1, tức là ta có: Tk = A(1 + r)k.

Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: Tk + 1 = A(1 + r)k + 1.

Thật vậy,

Tổng số tiền (cả vốn lẫn lãi) Tk + 1 nhận được sau kì thứ (k + 1) là:

Tk + 1 = A(1 + r)k + A(1 + r)k.r = A(1 + r)k(1 + r) = A(1 + r)k + 1.

Vậy khẳng định đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, khẳng định đúng với mọi số tự nhiên n ≥ 1.

Vậy Tn = A(1 + r)n với mọi số tự nhiên n ≥ 1.

Bài tập (trang 32)

Bài 1 trang 32 Chuyên đề Toán 10: Chứng minh các đẳng thức sau đúng với mọi n*

a)  1.2+2.3+3.4++n.(n+1)=n(n+1)(n+2)3;

b) 1+4+9++n2=n(n+1)(2n+1)6

c) 1+2+22+23+24++2n-1=2n-1

Lời giải:

a) Bước 1. Với n = 1, ta có 1(1 + 1) = 2 = 1(1+1)(1+2)3.

Do đó đẳng thức đúng với n = 1.

Bước 2. Giả sử đẳng thức đúng với n = k ≥ 1, nghĩa là có:

1.2+2.3+3.4++k.(k+1)=k(k+1)(k+2)3.

Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:

1.2+2.3+3.4++k.(k+1)+(k+1)[(k+1)+1]=(k+1)[(k+1)+1][(k+1)+2]3.

Sử dụng giả thiết quy nạp, ta có:

1.2+2.3+3.4++k.(k+1)+(k+1)[(k+1)+1]

=k(k+1)(k+2)3+(k+1)(k+2)

=k(k+1)(k+2)3+3(k+1)(k+2)3

=(k+1)(k+2)(k+3)3

=(k+1)[(k+1)+1][(k+1)+2]3.

Vậy đẳng thức đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, đẳng thức đúng với mọi số tự nhiên n ≥ 1.

b) Bước 1. Với n = 1, ta có 12 = 1 = 1(1+1)(2.1+2)6.

Do đó đẳng thức đúng với n = 1.

Bước 2. Giả sử đẳng thức đúng với n = k ≥ 1, nghĩa là có:

1+4+9++k2=k(k+1)(2k+1)6.

Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:

1+4+9++k2+(k+1)2=(k+1)[(k+1)+1][2(k+1)+1]6.

Sử dụng giả thiết quy nạp, ta có:

1+4+9++k2+(k+1)2

=k(k+1)(2k+1)6+(k+1)2

=k(k+1)(2k+1)6+6(k+1)26

=k+16[k(2k+1)+6(k+1)]

=k+16[2k2+7k+6]

=k+16(k+2)(2k+3)

=k+16[(k+1)+1][2(k+1)+1]

=(k+1)[(k+1)+1][2(k+1)+1]6.

Vậy đẳng thức đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, đẳng thức đúng với mọi số tự nhiên n ≥ 1.

c) Bước 1. Với n = 1, ta có 21 – 1 = 20 = 1 = 21 – 1.

Do đó đẳng thức đúng với n = 1.

Bước 2. Giả sử đẳng thức đúng với n = k ≥ 1, nghĩa là có:

1+2+22+23+24++2k-1=2k-1.

Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:

1+2+22+23+24++2k-1+2(k+1)-1=2k+1-1.

Sử dụng giả thiết quy nạp, ta có:

1+2+22+23+24++2k-1+2(k+1)-1

=(2k-1)+2(k+1)-1

=2k-1+2k

=2.2k-1

=2k+1-1.

Vậy đẳng thức đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, đẳng thức đúng với mọi số tự nhiên n ≥ 1.

Bài 2 trang 32 Chuyên đề Toán 10: Chứng minh rằng, với mọi n*, ta có:

a) 52n – 1 chia hết cho 24;

b) n3 + 5n chia hết cho 6.

Lời giải:

a) Bước 1. Với n = 1, ta có 52.1 – 1 = 24 ⁝ 24. Do đó khẳng định đúng với n = 1.

Bước 2. Giả sử khẳng định đúng với n = k ≥ 1, nghĩa là có: 52k – 1 ⁝ 24.

Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:

52(k + 1) – 1 ⁝ 24.

Sử dụng giả thiết quy nạp, ta có:

52(k + 1) – 1 = 52k + 2 – 1 = 25 . 52k – 1 = 24 . 52k + (52k – 1)

Vì 24 . 52k và (52k – 1) đều chia hết cho 24 nên 24 . 52k + (52k – 1) ⁝ 24 hay 52(k + 1) – 1 ⁝ 24.

Vậy khẳng định đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, khẳng định đúng với mọi số tự nhiên n ≥ 1.

b) Bước 1. Với n = 1, ta có 13 + 5 . 1 = 6 ⁝ 6. Do đó khẳng định đúng với n = 1.

Bước 2. Giả sử khẳng định đúng với n = k ≥ 1, nghĩa là có: k3 + 5k ⁝ 6.

Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:

(k + 1)3 + 5(k + 1) ⁝ 6.

Sử dụng giả thiết quy nạp, ta có:

(k + 1)3 + 5(k + 1) = k3 + 3k2 + 3k + 1 + 5k + 5 = (k3 + 5k) + (3k2 + 3k) + 6

= (k3 + 5k) + 3k(k + 1) + 6.

Vì k và k + 1 là hai số tự nhiên liên tiếp nên có một số chia hết cho 2, do đó 3k(k + 1) ⁝ 6.

Do đó (k3 + 5k) và 3k(k + 1) đều chia hết cho 6, suy ra (k3 + 5k) + 3k(k + 1) + 6 ⁝ 6 hay (k + 1)3 + 5(k + 1) ⁝ 6.

Vậy khẳng định đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, khẳng định đúng với mọi số tự nhiên n ≥ 1.

Bài 3 trang 32 Chuyên đề Toán 10: Chứng minh rằng nếu x > –1 thì (1 + x)n ≥ 1 + nx với mọi n*

Lời giải:

Bước 1. Với n = 1 ta có (1 + x)1 = 1 + x = 1 + 1.x.                                   

Như vậy khẳng định đúng cho trường hợp n = 1.

Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: (1 + x)k ≥ 1+ kx.

Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: (1 + x)k + 1 ≥ 1+ (k + 1)x.

Thật vậy, sử dụng giả thiết quy nạp ta có:

(1 + x)k + 1

= (1 + x)(1 + x)k ≥ (1 + x)(1+ kx) = 1 + x + kx + kx2 > 1 + x + kx = 1+ (k + 1)x.

Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.

Bài 4 trang 32 Chuyên đề Toán 10: Cho a, b ≥ 0. Chứng minh rằng bất đẳng thức sau đúng với mọi n*:

an+bn2(a+b2)n.

Lời giải:

Bước 1. Với n = 1, ta có  a1+b12=a+b2=(a+b2)1. Do đó bất đẳng thức đúng với n = 1.

Bước 2. Giả sử bất đẳng thức đúng với n = k ≥ 1, nghĩa là có: ak+bk2(a+b2)k.

Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:

ak+1+bk+12(a+b2)k+1.

Ta có:

Vì (ak – bk) và (a – b) cùng dấu nên (ak – bk)(a – b) ≥ 0 với mọi k ≥ 1,

suy ra ak + 1 + bk + 1 ≥ akb + abk

 (ak + 1 + bk + 1) + (ak + 1 + bk + 1) ≥ (akb + abk) + (ak + 1 + bk + 1) = (a + b)(ak + bk)

 2(ak + 1 + bk + 1) ≥ (a + b)(ak + bk)

ak+1+bk+12(a+b)2.(ak+bk)2

ak+1+bk+12a+b2.ak+bk2a+b2.(a+b2)k=(a+b2)k+1.

Vậy bất đẳng thức đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, bất đẳng thức đúng với mọi số tự nhiên n ≥ 1.

Bài 5 trang 32 Chuyên đề Toán 10: Chứng minh rằng bất đẳng thức sau đúng với mọi số tự nhiên n ≥ 2:

1+12+13++1n>2nn+1.

Lời giải:

Bước 1. Với n = 2, ta có 1+12=32>43=2.22+1. Do đó bất đẳng thức đúng với n = 2.

Bước 2. Giả sử bất đẳng thức đúng với n = k ≥ 2, nghĩa là có:

1+12+13++1k>2kk+1.

Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:

1+12+13++1k+1k+1>2(k+1)(k+1)+1.

Sử dụng giả thiết quy nạp, ta có:

1+12+13++1k+1k+1>2kk+1+1k+1=2k+1k+1=(2k+1)(k+2)(k+1)(k+2)=2k2+5k+2(k+1)(k+2)

>2k2+4k+2(k+1)(k+2)=2(k+1)2(k+1)(k+2)=2(k+1)k+2=2(k+1)(k+1)+1.

Vậy bất đẳng thức đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, bất đẳng thức đúng với mọi số tự nhiên n ≥ 1.

Bài 6 trang 32 Chuyên đề Toán 10: Trong mặt phẳng, cho đa giác A1 A2 A3... An có n cạnh (n ≥ 3). Gọi Sn là tổng số đo các góc trong của đa giác.

a) Tính S3, S4, S5 tương ứng với trường hợp đa giác là tam giác, tứ giác, ngũ giác.

b) Từ đó, dự đoán công thức tính Sn và chứng minh công thức đó bằng phương pháp

Lời giải:

a) S3 = 180o, S4 = 360o, S5 = 540o.

b) Từ a) ta dự đoán Sn = (n – 2) . 180o.

Ta chứng minh công thức bằng phương pháp quy nạp toán học.

Bước 1. Với n = 3, ta có tổng ba góc của một tam giác bằng 180o = (3 – 2) . 180o. Vậy công thức đúng với n=3.

Bước 2. Giả sử công thức đúng với n = k ≥ 3, ta sẽ chứng minh công thức đúng với n = k + 1.

Bài 6 trang 32 Chuyên đề Toán 10

Thật vậy, xét đa giác k + 1 cạnh A1A2...AkAk + 1, nối hai đỉnh A1 và Ak ta được đa giác k cạnh A1A2...Ak. Theo giả thiết quy nạp, tồng các góc của đa giác k cạnh này bằng (k – 2) . 180o

Dễ thấy tổng các góc của đa giác A1A2...AkAk + 1 bằng tổng các góc của đa giác

A1A2...Ak cộng với tổng các góc của tam giác Ak + 1AkA1, tức là bằng

(k – 2) . 180o + 180o = (k – 1) . 180o = [(k+1) – 2] . 180o.

Vậy công thức đúng với mọi đa giác n cạnh, n ≥ 3.

Bài 7 trang 32 Chuyên đề Toán 10: Hàng tháng, một người gửi vào ngân hàng một khoản tiền tiết kiệm không đổi a đồng. Giả sử lãi suất hằng tháng là r không đổi và theo thể thức lãi kép (tiền lãi của tháng trước được cộng vào vốn của tháng kế tiếp). Gọi Tn (n ≥ 1) là tổng tiền vốn và lãi của người đó có trong ngân hàng tại thời điểm ngay sau khi gửi vào khoản thứ n + 1.

a) Tính T1, T2, T3.

b) Dự đoán công thức tính Tn và chứng minh công thức đó bằng phương pháp quy nạp toán học.

Lời giải:

a)

– T1 là tổng tiền vốn và lãi của người đó có trong ngân hàng tại thời điểm ngay sau khi gửi vào khoản thứ 2:

T1 = (a + ar) + a = a(1 + r) + a = a[(1 + r) + 1].

– T2 là tổng tiền vốn và lãi của người đó có trong ngân hàng tại thời điểm ngay sau khi gửi vào khoản thứ 3:

T2 = T1 + T1 . r + a

= a[(1 + r) + 1] + a[(1 + r) + 1]r + a

= a[(1 + r) + 1](1 + r) + a

= a(1 + r)2 + a(1 + r) + a

= a[(1 + r)2 + (1 + r) + 1].

– T3 là tổng tiền vốn và lãi của người đó có trong ngân hàng tại thời điểm ngay sau khi gửi vào khoản thứ 4:

T3 = T2 + T2 . r + a

= a[(1 + r)2 + (1 + r) + 1] + a[(1 + r)2 + (1 + r) + 1]r + a

= a[(1 + r)2 + (1 + r) + 1](1 + r) + a

= a(1 + r)3 + a(1 + r)2 + a(1 + r) + a

= a[(1 + r)3 + (1 + r)2 + (1 + r) + 1].

b) Từ câu a) ta có thể dự đoán:

Tn = a[(1 + r)n + ... + (1 + r)2 + (1 + r) + 1]

=a.1-(1+r)n+11-(1+r)=a.1-(1+r)n+1-r=a.(1+r)n+1-1r.

Ta chứng minh bằng quy nạp toán học.

Bước 1. Với n = 1 ta có:

T1 = a[(1 + r) + 1]=a.r2+2rr=a.(r2+2r+1)-1r=a.(1+r)2-1r=a.(1+r)1+1-1r.          

Như vậy khẳng định đúng cho trường hợp n = 1.

Bước 2. Giả sử khẳng định đúng với n = k ≥ 1, tức là ta có: Tk = a.(1+r)k+1-1r.

Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: Tk + 1 = a.(1+r)(k+1)+1-1r.

Thật vậy,

Tk + 1 = Tk + Tk . r + a

=a.(1+r)k+1-1r+a.(1+r)k+1-1r.r+a

=a[(1+r)k+1-1r+(1+r)k+1-1r.r+1]

=a[(1+r)k+1-1r+[(1+r)k+1-1]rr+rr]

=a.(1+r)k+1-1+[(1+r)k+1-1]r+rr

=a.(1+r)k+1-1+r(1+r)k+1-r+rr

=a.(1+r)k+1-1+r(1+r)k+1r

=a.(1+r)(1+r)k+1-1r

=a.(1+r)k+2-1r

=a.(1+r)(k+1)+2-1r.

Vậy khẳng định đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, khẳng định đúng với mọi số tự nhiên n ≥ 1.

Vậy Tn = a.(1+r)n+1-1r với mọi số tự nhiên n ≥ 1.

Đánh giá

0

0 đánh giá