Với giải Bài 5 trang 73 Toán 8 Tập 2 Cánh diều chi tiết trong Bài 5: Tam giác đồng dạng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:
Giải bài tập Toán lớp 8 Bài 5: Tam giác đồng dạng
Bài 5 trang 73 Toán 8 Tập 2: Cho tam giác ABC (Hình 55), các điểm M, N thuộc cạnh AB thoả mãn AM = MN = NB, các điểm P, Q thuộc cạnh AC thoả mãn AP = PQ = QC. Tam giác AMP đồng dạng với những tam giác nào?
Lời giải:
Vì AM = MN; AP = PQ nên M, P lần lượt là trung điểm của AN, AQ.
Xét ∆ANQ có M, P lần lượt là trung điểm của AN, AQ nên MP là đường trung bình của ∆ANQ.
Suy ra MP // NQ nên ∆AMP ᔕ ∆ANQ.
Do AM = MN = NB; AP = PQ = QC nên ta có
Xét ∆ABC có nên MP // BC (định lí Pythagore đảo)
Do đó ∆AMP ᔕ ∆ABC.
Xem thêm các lời giải bài tập Toán lớp 8 Cánh diều hay, chi tiết khác:
Hoạt động 2 trang 71 Toán 8 Tập 2: Từ định nghĩa hai tam giác đồng dạng, hãy cho biết:...
Bài 1 trang 73 Toán 8 Tập 2: Cho ∆ABC ᔕ ∆MNP và Tính các góc C, M, N, P...
Xem thêm các bài giải SGK Toán lớp 8 Cánh diều hay, chi tiết khác: