Với giải Bài 6 trang 73 Toán 8 Tập 2 Cánh diều chi tiết trong Bài 5: Tam giác đồng dạng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:
Giải bài tập Toán lớp 8 Bài 5: Tam giác đồng dạng
Bài 6 trang 73 Toán 8 Tập 2: Cho hình bình hành ABCD. Một đường thẳng đi qua D lần lượt cắt đoạn thẳng BC và tia AB tại M và N sao cho điểm M nằm giữa hai điểm B và C. Chứng minh:
a) ∆NBM ᔕ ∆NAD;
b) ∆NBM ᔕ ∆DCM;
c) ∆NAD ᔕ ∆DCM.
Lời giải:
a) Do ABCD là hình bình hành nên BC // AD hay BM // AD.
Do BM // AD nên ∆NBM ᔕ ∆NAD.
b) Do ABCD là hình bình hành nên AB // CD hay BN // CD.
Do BN // CD nên ∆NBM ᔕ ∆DCM.
c) Do ∆NBM ᔕ ∆NAD nên ∆NAD ᔕ ∆NBM
Mà ∆NBM ᔕ ∆DCM nên ∆NAD ᔕ ∆DCM.
Xem thêm các lời giải bài tập Toán lớp 8 Cánh diều hay, chi tiết khác:
Hoạt động 2 trang 71 Toán 8 Tập 2: Từ định nghĩa hai tam giác đồng dạng, hãy cho biết:...
Bài 1 trang 73 Toán 8 Tập 2: Cho ∆ABC ᔕ ∆MNP và Tính các góc C, M, N, P...
Xem thêm các bài giải SGK Toán lớp 8 Cánh diều hay, chi tiết khác: