Giải SBT Toán 7 trang 41 Tập 1 Chân trời sáng tạo

2.7 K

Với lời giải SBT Toán 7 trang 41 Tập 1 chi tiết trong Bài 2: Số thực. Giá trị tuyệt đối của một số thực sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Toán lớp 7 Bài 2: Số thực. Giá trị tuyệt đối của một số thực

Bài 4 trang 41 Sách bài tập Toán 7 Tập 1: Hãy thay dấu ? bằng các số thích hợp:

a) 9,289 > 9,2?79;

b) -0,3489 > -0,34?8.

Lời giải

a) Hai số thập phân này có cùng phần nguyên, từ trái qua phải hai chữ số thập phân thứ nhất bằng nhau.

Vì 9 > 7 nên để 9,289 > 9,2?79 thì chữ số cần điền có thể là: 0; 1; 2; 3; 4; 5; 6; 7; 8.

Vậy các số thích hợp để thay cho dấu ? là 0; 1; 2; 3; 4; 5; 6; 7; 8.

b) Hai số thập phân này có cùng phần nguyên, từ trái qua phải hai chữ số thập phân thứ nhất, thứ hai bằng nhau.

Vì 9 > 8 nên để -0,3489 > -0,34?8 thì chữ số cần điền chỉ có thể là: 9.

Vậy các số thích hợp để thay cho dấu ? là 9.

Bài 5 trang 41 Sách bài tập Toán 7 Tập 1: Tìm số đối của các số sau: π; 25%; – 5; 1135.

Lời giải

Số đối của π là – π;

Số đối của 25% là – 25%;

Số đối của – 5 là – (– 5);

Số đối của 11 là 11=11;

Số đối của 35 là 35=35.

Bài 6 trang 41 Sách bài tập Toán 7 Tập 1: Tìm giá trị tuyệt đối của các số sau:

9;  23;  90%;  54;  π.

Lời giải

Ta có: 

Vì 9>0 nên 9=32=3;

Vì – 23 < 0 nên |– 23| =  – ( – 23) = 23;

  – 90% < 0 nên | – 90%| = 0 – (– 90%) = 90%;

Vì 54>0 nên 54=54;  

  – π < 0 nên |– π| = – (– π) =  π.

Vậy giá trị tuyệt đối của 9;  23;  90%;  54;  π lần lượt là 3;  23;  90%;  54;  π.

Bài 7 trang 41 Sách bài tập Toán 7 Tập 1: Sắp xếp theo thứ tự từ nhỏ đến lớn giá trị tuyệt đối của các số sau: – 1,99; 1,9; 3119.

Lời giải

+) Ta có:

Vì – 1,99 < 0 nên |– 1,99| = 0 – ( – 1,99) = 1,99;

Vì 1,9 > 0 nên |1,9| = 1,9;

Vì 3<0nên 3=3=3;

Vì 119 > 0 nên 119=119.

+) So sánh giá trị tuyệt đối

Vì 0 < 9 nên 1,9 < 1,99 (1)

Ta lại có: 3=1,732050808...119=1+19=1+0,(1)=1,(1)

Vì 1 < 7 < 9 nên 1,(1) < 1,732050805... < 1,9 (2)

Từ (1) và (2) suy ra 1,(1) < 1,732050805... < 1,9 < 1,99 hay 1193; 1,9; 1,99.

Vậy theo thứ tự từ nhỏ đến lớn giá trị tuyệt đối của các số sau: – 1,99; 1,9; 3119 là: 1193; 1,9; 1,99.

Bài 8 trang 41 Sách bài tập Toán 7 Tập 1: Tìm giá trị của x, biết rằng: 2|x| = 12.

Lời giải

2|x| = 12

|x| = 12:2

|x| = 122

x = 122 hoặc x = 122.

Vậy x = 122 hoặc x = 122.

Bài 9 trang 41 Sách bài tập Toán 7 Tập 1: Tìm giá trị của y, biết rằng |2y – 5| = 0.

Lời giải

|2y – 5| = 0

2y – 5 = 0

2y = 5

y = 5 : 2

y = 52

Vậy y = 52.

Bài 10 trang 41 Sách bài tập Toán 7 Tập 1: Rút gọn biểu thức: M = a2.

Lời giải

TH1. Nếu a < 0 thì – a > 0 ta có (-a)2 = a2 nên a2=a.

TH2. Nếu a ≥ 0, ta có a2=a.

Vậy M = a2=a=a  khi  a<0a  khi  a>0.

Bài 11 trang 41 Sách bài tập Toán 7 Tập 1: Cho một hình vuông có diện tích 5m2. Hãy so sánh độ dài a của cạnh hình vuông đó với độ dài b = 2,361 m.

Lời giải

Vì diện tích hình vuông bằng bình phương độ dài cạnh nên độ dài cạnh bằng căn bậc hai số học của diện tích.

Độ dài a của cạnh hình vuông là:

a=5=2,236067977... (m)

Ta có: 5=2,236067977...

Vì 2 < 3 nên 2,236067977... < 2,361 hay 5< 2,361.

Vậy độ dài cạnh a của hình vuông là 5 và a < b.

Xem thêm các bài giải sách bài tập Toán 7 Chân trời sáng tạo hay, chi tiết khác:

Giải SBT Toán 7 trang 40 Tập 1

Đánh giá

0

0 đánh giá