Giải SBT Toán 7 trang 40 Tập 1 Chân trời sáng tạo

2.8 K

Với lời giải SBT Toán 7 trang 40 Tập 1 chi tiết trong Bài 2: Số thực. Giá trị tuyệt đối của một số thực sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Toán lớp 7 Bài 2: Số thực. Giá trị tuyệt đối của một số thực

Bài 1 trang 40 Sách bài tập Toán 7 Tập 1: Hãy thay dấu ? bằng kí hiệu  hoặc  để có phát biểu đúng.

3,9 ? ℤ;

29% ? ℚ;

7 ? ℚ;

499 ? ℚ;

3 ? ?;

5 ? ℝ;

π ? ?;

Lời giải

Ta có 3,9 là số hữu tỉ không phải là số nguyên nên 3,9  ℤ. Khi đó ta điền: 3,9  ℤ.

Ta có 29% = 29100 (trong đó 29, 100  ℤ và 100 ≠ 0) nên 29%  ℚ. Khi đó ta điền: 29%  ℚ.

Ta có 72,645751311... là số thập phân vô hạn không tuần hoàn nên 7 là số vô tỉ mà số vô tỉ không là số hữu tỉ do đó7  ℚ. Khi đó ta điền7  ℚ.

Ta có: 499 (trong đó 4; 99  ℤ và 99 ≠ 0) nên 499 ℚ. Khi đó ta điền 499  ℚ.

Ta có: 31,732050808... là số thập phân vô hạn không tuần hoàn nên 3  ?. Khi đó ta điền:3  ?.

Ta có:52,236067977... là số thập phân vô hạn không tuần hoàn nên 5 là số vô tỉ, mà số thực bao gồm số hữu tỉ và số vô tỉ. Khi đó ta điền 5 ℝ.

Ta có π ≈ 3,141592654... là số thập phân vô hạn không tuần hoàn nên π là số vô tỉ. Khi đó ta điền π  ?.

Bài 2 trang 40 Sách bài tập Toán 7 Tập 1: Sắp xếp theo thứ tự từ nhỏ đến lớn các số thực sau: 45; 0,(8); 3; 1,74; – π; – 3,142; 2.

Lời giải

Ta có: 45=0,8; – π = – 3,141592654...; 3=1,732050808...

Vì 3,141592654... < 3,142 nên – 3,141592654... > – 3,142 hay – 3,142 < – π. (1)

Ta lại có 0,8 < 0,(8) < 1,732050808... < 1,74 < 2 nên 45 < 0,(8) <3 < 1,74 < 2. (2)

Từ (1) và (2) suy ra  – 3,142 < – π < 45 < 0,(8) <3 < 1,74 < 2.

Vậy theo thứ tự từ nhỏ đến lớn ta có dãy: – 3,142; – π; 45; 0,(8);3; 1,74; 2.

Bài 3 trang 40, 41 Sách bài tập Toán 7 Tập 1Hãy cho biết tính đúng, sai của các khẳng định sau:

a) 4;9;  25là các số vô tỉ;

b) Số vô tỉ không phải là số thực;

c) 12;23;0,45 là các số hữu tỉ;

d) Số 0 là số vô tỉ;

e) 0,1; 0; 9; 99% là các số hữu tỉ.

Lời giải

a) Ta có:

22 = 4 (2 > 0) nên 4 = 2 là số hữu tỉ, mà số hữu tỉ không là số vô tỉ;

32 = 9 (3 > 0) nên 9= 3 là số hữu tỉ, mà số hữu tỉ không là số vô tỉ;

52 = 25 (5 > 0) nên 25 = 5 là số hữu tỉ, mà số hữu tỉ không là số vô tỉ.

Suy ra 4;9;  25là các số hữu tỉ. Do đó a) sai.

b) Số thực bao gồm số hữu tỉ và số vô tỉ nên số vô tỉ là số thực. Do đó b) sai.

c) Ta có:

12 (trong đó -1; 2  ℤ, 2 ≠ 0) là số hữu tỉ;

23 (trong đó 3; 2  ℤ, 3 ≠ 0) là số hữu tỉ;

0,45=45100 (trong đó -45; 100  ℤ, 100 ≠ 0) là số hữu tỉ;

Suy ra12;23;0,45 là các số hữu tỉ. Do đó c) đúng.

d) Số 0 là số hữu tỉ và không là số vô tỉ. Do đó d) sai.

e) Ta có: 0,1 = 110 (trong đó 1; 10  ℤ, 10 ≠ 0) là số hữu tỉ;

0 = 01 (trong đó 0; 1  ℤ, 10 ≠ 0) là số hữu tỉ;

9 = 91(trong đó 9; 1  ℤ, 1 ≠ 0) là số hữu tỉ;

99% =  99100(trong đó 9; 100  ℤ, 100 ≠ 0) là số hữu tỉ.

Suy ra 0,1; 0; 9; 99% là các số hữu tỉ. Do đó e) đúng.

Xem thêm các bài giải sách bài tập Toán 7 Chân trời sáng tạo hay, chi tiết khác:

Giải SBT Toán 7 trang 41 Tập 1

Đánh giá

0

0 đánh giá