Cho a, b, c, x, y, z là các số thực dương khác 1 và logx của a, logy của b, logz của c theo thứ tự

895

Với giải Bài 32 trang 39 SBT Toán lớp 11 Cánh diều chi tiết trong Bài 2: Phép tính lôgarit giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 2: Phép tính lôgarit

Bài 32 trang 39 SBT Toán 11 Tập 2Cho a, b, c, x, y, z là các số thực dương khác 1 và logxa, logyb, logzc theo thứ tự lập thành một cấp số cộng. Chứng minh rằng:

logby=2logaxlogczlogax+logcz.

Lời giải:

Do logxa, logyb, logzc theo thứ tự lập thành một cấp số cộng nên ta có:

Cho a, b, c, x, y, z là các số thực dương khác 1

Đánh giá

0

0 đánh giá