Gieo một xúc xắc cân đối và đồng chất hai lần liên tiếp. a) Không gian mẫu Ω

2.6 K

Với giải Bài 13 trang 18 SBT Toán lớp 11 Cánh diều chi tiết trong Bài 2: Biến cố hợp và biến cố giao. Biến cố độc lập. Các quy tắc tính xác suất giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 2: Biến cố hợp và biến cố giao. Biến cố độc lập. Các quy tắc tính xác suất

Bài 13 trang 18 SBT Toán 11 Tập 2: Gieo một xúc xắc cân đối và đồng chất hai lần liên tiếp.

a) Không gian mẫu Ω có bao nhiêu phần tử?

b) Xét các biến cố:

A: “Số chấm xuất hiện ở lần gieo thứ nhất là 2”;

B: “Số chấm xuất hiện ở lần gieo thứ hai là 3”.

Tính xác suất của các biến cố A, B, A ∩ B.

Lời giải:

a) Số phần tử của không gian mẫu Ω là: n(Ω) = 6.6 = 36.

b) Xét biến cố A: “Số chấm xuất hiện ở lần gieo thứ nhất là 2”.

Lần gieo thứ nhất, số chấm xuất hiện là 2, có 1 cách.

Lần gieo thứ hai, số chấm xuất hiện có thể là 1; 2; 3; 4; 5; 6. Do đó có 6 cách.

Vậy số kết quả thuận lợi cho biến cố A là: n(A) = 1.6 = 6.

Suy ra: PA=636=16.

Tương tự, số kết quả thuận lợi cho biến cố B là: n(B) = 6.1 = 6.

Suy ra: PB=636=16.

Ta thấy: Vì hai lần gieo liên tiếp là độc lập nên xác suất của biến cố B khi biến cố A xảy ra là 16 xác suất của biến cố B khi biến cố A không xảy ra cũng bằng 16

Do đó việc xảy ra hay không xảy ra của biến cố A không làm ảnh hướng đến xác suất của biến cố B. Tương tự, việc xảy ra hay không xảy ra của biến cố B không làm ảnh hướng đến xác suất của biến cố A. Vì vậy, hai biến cố A và B là độc lập.

Vậy PAB=PAPB=1616=136.

Đánh giá

0

0 đánh giá