So sánh các cặp số sau: a) 2 log0,6 5 và 3 log 0,6 (2 3 căn 3)

0.9 K

Với giải Bài 7 trang 18 SBT Toán lớp 11 Chân trời sáng tạo chi tiết trong Bài 3: Hàm số mũ. Hàm số lôgarit giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 3: Hàm số mũ. Hàm số lôgarit

Bài 7 trang 18 SBT Toán 11 Tập 2: So sánh các cặp số sau:

a) 2 log0,6 5 và 3log0,6233;

b) 6 log5 2 và 2 log5 6 ;

c) 12log21212log223;

d) 2 log3 7 và 6 log9 4.

Lời giải:

a) Ta có 2 log0,6 5 = log0,6 52 = log0,6 25;

3log0,6233=log0,63.2333=log0,6(24).

Do hàm số log0,6 x cơ số 0 < 0,6 < 1 nên hàm số nghịch biến trên (0; +∞) và 25 > 24 .

Do đó log0,6 25 < log0,6 24.

Vậy 2 log0,6 5 < 3log0,6233.

b) Ta có 6 log5 2 = log5 26 = log5 64;

2 log5 6 = log5 62 = log5 36

Do hàm số log5 x cơ số 5 > 1 nên hàm số đồng biến trên (0; +∞) và 64 > 36.

Do đó log5 64 > log5 36,

Vậy 6 log5 2 > 2 log5 6;

c) Ta có 12log2121=log2121=log211;

2log223=log2232=log2232=log212.

Do hàm số log2 x cơ số 2 > 1 nên hàm số đồng biến trên (0; +∞) và 11 < 12.

Do đó log2 11 < log2 12,

Vậy 12log2121<2log223.

d) Ta có 2 log3 7 = log3 72 = log3 49;

= 6log94=6log324=6.12log34

= 3log34=log343=log364;

Do hàm số log3 x cơ số 3 > 1 nên hàm số đồng biến trên (0; +∞) và 49 < 64.

Do đó log3 49 < log3 64.

Vậy 2 log3 7 < 6 log9 4.

Đánh giá

0

0 đánh giá