Cho tứ diện ABCD. Gọi M, N lần lượt là các điểm thuộc các cạnh AB, AC sao cho

629

Với giải Bài 2 trang 117 SBT Toán lớp 11 Chân trời sáng tạo chi tiết trong Bài 2: Hai đường thẳng song song giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 2: Hai đường thẳng song song

Bài 2 trang 117 SBT Toán 11 Tập 1: Cho tứ diện ABCD. Gọi M, N lần lượt là các điểm thuộc các cạnh AB, AC sao cho AMAB=ANAC; I; J lần lượt là trung điểm của BD, CD.

a) Chứng minh rằng MN // BC.

b) Tứ giác MNJI là hình gì. Tìm điểu kiện để tứ giác MNJI là hình bình hành.

Lời giải:

Cho tứ diện ABCD. Gọi M, N lần lượt là các điểm thuộc các cạnh AB, AC

a) Xét ∆ABC có AMAB=ANAC, suy ra MN // BC (định lý Thalès đảo).

b) Xét ∆BCD có I, J lần lượt là trung điểm của BD, CD nên IJ là đường trung bình của tam giác DBC, suy ra IJ // BC.

Mà MN // BC (câu a) nên IJ // MN, do đó MNJI là hình thang.

MNJI là hình bình hành khi và chỉ khi MI // NJ // AD

Mà I là trung điểm của BD

Suy ra MI là đường trung bình của tam giác ADB.

Vậy M là trung điểm AB.

Đánh giá

0

0 đánh giá