Với lời giải SBT Toán 11 trang 95 Tập 1 chi tiết trong Bài tập cuối chương 3 trang 91 sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:
Giải SBT Toán 11 Bài tập cuối chương 3 trang 91
Bài 9 trang 95 SBT Toán 11 Tập 1: Cho hàm số .
a) Xét tính liên tục của hàm số đã cho.
b) Tìm các giới hạn
Lời giải:
a) Ta có: x ‒ 3 ≠ 0 ⇔ x ≠ 3
f(x) là hàm phân thức có tập xác định D = ℝ ∖ {3} nên nó liên tục trên các khoảng (‒∞; 3) và (3; +∞).
b) Ta có:
⦁
⦁
⦁
Vì
Nên
⦁
Vì
Nên
Bài 10 trang 95 SBT Toán 11 Tập 1: Cho điểm M thay đổi trên parabol y = x2; H là hình chiếu vuông góc của M trên trục hoành. Gọi x là hoành độ của điểm H.
Tìm
Lời giải:
Ta có .
Khi đó
Bài 11 trang 95 SBT Toán 11 Tập 1: Chứng minh rằng phương trình x5 + 3x2 ‒ 1 = 0 trong mỗi khoảng (‒2; ‒1), (‒1; 0) và (0; 1) đều có ít nhất một nghiệm.
Lời giải:
Xét hàm số f(x) = x5 + 3x2 ‒ 1. Hàm số này liên tục trên ℝ.
Ta có:
f(‒2) = (‒2)5 + 3.(‒2)2 ‒ 1 = ‒32 + 12 ‒ 1 = ‒21.
f(‒1) = (‒1)5 + 3.(‒1)2 ‒ 1 = ‒1 + 3 ‒ 1 = 1.
f(0) = 05 + 3.02 ‒ 1 = ‒1.
f(1) = 15 + 3.12 ‒ 1 = 3.
Do f(‒2).f(‒1) = ‒21 < 0 nên phương trình f(x) có nghiệm thuộc (‒2; ‒1).
Do f(‒1).f(0) < 0 nên phương trình f(x) = 0 có nghiệm thuộc (‒1; 0).
Do f(0).f(1) = ‒3 < 0 nên phương trình f(x) = 0có nghiệm thuộc (0; 1).
Vậy trong mỗi khoảng (‒2; ‒1), (‒1; 0) và (0; 1)phương trình f(x) = 0 hay x5 + 3x2 ‒ 1 = 0 đều có ít nhất một nghiệm.
Bài 12 trang 95 SBT Toán 11 Tập 1: Tại một bể bơi có dạng hình tròn có đường kính AB = 10m, một người xuất phát từ A bơi thẳng theo dây cung AC tạo với đường kính AB một góc rồi chạy bộ theo cung nhỏ CB đến điểm B (Hình 4). Gọi S(α) là quãng đường người đó đã di chuyển.
a) Viết công thức tính S(α) theo .
b) Xét tính liên tục của hàm số y = S(α) trên khoảng .
c) Tính các giới hạn và
Lời giải:
Kí hiệu O là tâm hình tròn.
a) Do tam giác ABC vuông tại C nên AC = ABcosα = 10cosα (m).
Ta có .
Suy ra độ dài cung CB là .
Quãng đường di chuyển (tính theo m) của người đó là:
b) Do các hàm số y = α và y = cosα liên tục trên ℝ nên hàm số y = S(α) liên tục trên ℝ
Mà nên hàm số y = S(α) liên tục trên
c) Ta có:
Xem thêm lời bài sách bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Câu 1 trang 91 SBT Toán 11 Tập 1: bằng....
Câu 2 trang 92 SBT Toán 11 Tập 1: Ta có: bằng...
Câu 3 trang 92 SBT Toán 11 Tập 1: bằng...
Câu 5 trang 92 SBT Toán 11 Tập 1: bbằn.....
Câu 6 trang 92 SBT Toán 11 Tập 1: bằng....
Câu 7 trang 92 SBT Toán 11 Tập 1: bằng...
Câu 8 trang 92 SBT Toán 11 Tập 1: Biết với a và b là hai số thực. Giá trị của a + b bằng....
Câu 9 trang 92 SBT Toán 11 Tập 1: Cho hàm số Đặt và Giá trị của a ‒ 2b bằng...
Câu 10 trang 92 SBT Toán 11 Tập 1: Biết rằng . Giới hạn bằng...
Câu 11 trang 93 SBT Toán 11 Tập 1: Biết rằng Giá trị của a là...
Câu 12 trang 93 SBT Toán 11 Tập 1: bằng....
Câu 13 trang 93 SBT Toán 11 Tập 1: Biết rằng hàm số liên tục tại điểm x = 3. Giá trị của a bằng....
Câu 14 trang 93 SBT Toán 11 Tập 1: Cho hàm số liên tục trên đoạn Giá trị của k bằng:....
Bài 1 trang 93 SBT Toán 11 Tập 1: Tìm các giới hạn sau:.....
Bài 3 trang 93 SBT Toán 11 Tập 1: Tìm ....
Bài 4 trang 94 SBT Toán 11 Tập 1: Cho a > b > 0 và Tìm giá trị của a....
Bài 5 trang 94 SBT Toán 11 Tập 1: Cho dãy số (un) thoả mãn Tìm lim(3n – 4)un....
Bài 8 trang 94 SBT Toán 11 Tập 1: Cho hàm số ...
Bài 9 trang 95 SBT Toán 11 Tập 1: Cho hàm số ....
Xem thêm các bài giải SBT Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác: