Giải SBT Toán 11 trang 93 Tập 1 Chân trời sáng tạo

266

Với lời giải SBT Toán 11 trang 93 Tập 1 chi tiết trong Bài tập cuối chương 3 trang 91 sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài tập cuối chương 3 trang 91

Câu 11 trang 93 SBT Toán 11 Tập 1: Biết rằng limx+2axx2+ax+x=3. Giá trị của a là

A. 34

B. 6.

C. 32

D. 3.

Lời giải:

Đáp án đúng là: D

Ta có limx+2axx2+ax+x=3limx+2a1+ax+1=3

2a2=3a=3.

Câu 12 trang 93 SBT Toán 11 Tập 1: limx213xx+2 bằng

A. +∞.

B. ‒∞.

C. ‒3 .

D. 74

Lời giải:

Đáp án đúng là: B

Do limx213x=132=1+6=7;limx21x+2=

Nên limx213xx+2=limx213x1x+2=.

Câu 13 trang 93 SBT Toán 11 Tập 1: Biết rằng hàm số fx=2x+1x3 khi x3a khi x=3 liên tục tại điểm x = 3. Giá trị của a bằng

A. -14

B. 14

C. ‒2.

D. 3.

Lời giải:

Đáp án đúng là: A

Hàm số fx=2x+1x3 là hàm số phân thức có tập xác định D = ℝ∖{3} nên nó liên tục trên khoảng (‒∞; 3) và (3; +∞)

Do đó, để hàm số liên tục tại điểm x = 3 thì:

limx3fx=f3 hay limx32x+1x3=a

limx32x+12+x+1x32+x+1=a

limx33xx32+x+1=a

limx312+x+1=a

12+3+1=aa=14.

Câu 14 trang 93 SBT Toán 11 Tập 1: Cho hàm số f(x) =tanx  khi 0 xπ4k-cotx khi π4<xπ2 liên tục trên đoạn 0;π2. Giá trị của k bằng:

A. 0.

B. 1.

C. 2.

D. π2.

Lời giải:

Đáp án đúng là: C

− Hàm số y = tanx là hàm lượng giác có tập xác định D=\π2+ với k ∈ ℤ nên nó liên tục trên các khoảng π2+;π2+k+1π

0;π4π2+;π2+k+1π nên hàm số y = tanx liên tục trên khoảng 0;π4

− Hàm số y = k – cotx là hàm lượng giác có tập xác định D = ℝ \ {kπ} với với k ∈ ℤ nên nó liên tục trên các khoảng (kπ; (k + 1)π).

π4;π2;k+1π nên hàm số y = k – cotx liên tục trên khoảng π4;π2.

− Do đó, để hàm số liên tục trên đoạn 0;π2 thì hàm số liên tục tại điểm x=π4limx0+fx=f0,limxπ2fx=fπ2.

⦁ Hàm số liên tục tại điểm x=π4 khi và chỉ khi limxπ4fx=limxπ4+fx=fπ4

tanπ4=kcotπ4=kcotπ4k1=1k=21

limx0+fx=f0limx0+tanx=tan0tan0=tan0 (luôn đúng)

limxπ2fx=fπ2limxπ2kcotx

=kcotπ2kcotπ2=kcotπ2 (luôn đúng)

Vậy k = 2.

Câu 15 trang 93 SBT Toán 11 Tập 1: Biết rằng phương trình x3 ‒ 2x ‒3 = 0 chỉ có một nghiệm. Phương trình này có nghiệm trong khoảng nào sau đây?

A. (‒1; 0).

B. (0; 1).

C. (1; 2).

D. (2; 3).

Lời giải:

Đáp án đúng là: C

Xét hàm số f(x) = x3 ‒ 2x ‒3 liên tục trên ℝ.

f(‒1) = (‒1)3 ‒ 2.(‒1) ‒ 3 = ‒2.

f(0) = 03 ‒ 2.0 ‒ 3 = ‒ 3.

f(1) = 13 ‒ 2.1 ‒ 3 = ‒4.

f(2) = 23 ‒ 2.2 ‒ 3 = 1.

f(3) = 33 ‒ 2.3 ‒ 3 = 18.

Ta thấy f(1).f(2) < 0 nên hàm số có nghiệm trong các khoảng (1; 2).

B. TỰ LUẬN

Bài 1 trang 93 SBT Toán 11 Tập 1: Tìm các giới hạn sau:

a) limn2n2+34n3+1;

b) limnn+5n+1.

Lời giải:

a) limn2n2+34n3+1=lim2n3+3n4n3+1=lim2+3n24+1n3=24=12.

b) Ta có:

nn+5n+1

=nn+5n+1n+5+n+1n+5+n+1

=4nn+5+n+1

Suy ra lim4nn+5+n+1=lim41+5n+1+1n =41+1=2.

Bài 2 trang 93 SBT Toán 11 Tập 1: Cho các dãy số (un) và (vn) thoả mãn limun = 2, lim(un – vn) = 4. Tìm lim3unvnunvn+3.

Lời giải:

Ta có lim(un – vn) = 4

Suy ra limun – limv = 4, hay limvn = limun – 4 = 2 – 4 = −2.

Do đó lim3unvnunvn+3=3limunlimvnlimunlimvn+3=32222+3=8.

Bài 3 trang 93 SBT Toán 11 Tập 1: Tìm lim6n+4n2n+13n+1.

Lời giải:

Ta có 6n+4n2n+13n+1=1+23n1+12n1+13n (chia cả tử và mẫu cho 6n = 2n.3n).

Do đó lim6n+4n2n+13n+1=lim1+23n1+12n1+13n=111=1.

Đánh giá

0

0 đánh giá