Giải Toán 11 trang 115 Tập 1 Chân trời sáng tạo

275

Với lời giải Toán 11 trang 115 Tập 1 chi tiết trong Bài 4: Hai mặt phẳng song song sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Bài 4: Hai mặt phẳng song song

Thực hành 1 trang 115 Toán 11 Tập 1: Cho tứ diện ABCD có E, F, H lần lượt là trung điểm của AB, AC, AD. Chứng minh (EFH) // (BCD).

Lời giải:

Thực hành 1 trang 115 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Trong mặt phẳng (ABC) có EF // BC (tính chất đường trung bình của tam giác ABC) suy ra EF // (BDC).

Trong mặt phẳng (ABD) có HE // BD ( tính chất đường trung bình của tam giác ABD) suy ra HE // (BDC).

Ta có EF và HE cắt nhau tại E và cùng nằm trong mặt phẳng (EFH) nên (EFH) // (BCD).

3. Tính chất của hai mặt phẳng song song

Hoạt động khám phá 3 trang 115 Toán 11 Tập 1: a) Cho điểm A ở ngoài mặt phẳng (Q). Trong (Q) vẽ hai đường thẳng cắt nhau a’ và b’. Làm thế nào để vẽ hai đường thẳng a và b đi qua A và song song với (Q)?

b) Có nhận xét gì về mối liên hệ giữa mp(a, b) và (Q)?

Lời giải:

a) Để vẽ được đường thẳng a đi qua A và song song với mặt phẳng (Q) ta làm như sau: Từ điểm A vẽ đường thẳng a song song với đường thẳng a’ mà a’ nằm trong (Q) nên thỏa mãn a // (Q).

Tương tự từ điểm A vẽ đường thẳng b song song với đường thẳng b’ mà b’ nằm trong (Q) nên thỏa mãn b // (Q).

b) Ta có a, b ⊂ mp(a, b), a ∩ b = {A}, a // (Q) và b // (Q) nên mp(a, b) // (Q).

Hoạt động khám phá 4 trang 115 Toán 11 Tập 1: Cho ba mặt phẳng (P), (Q), (R) thỏa mãn (P) // (Q), (R) ∩ (P) = a và (R) ∩ (Q) = b. Xét vị trí tương đối của a và b.

Hoạt động khám phá 4 trang 115 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Ta có: (P) // (Q) và a ⊂ (P) nên a // (Q).

Ta lại có (R) ∩ (Q) = b nên a // b.

Đánh giá

0

0 đánh giá