Giải Toán 11 trang 28 Tập 1 Kết nối tri thức

273

Với lời giải Toán 11 trang 28 Tập 1 chi tiết trong Bài 3: Hàm số lượng giác sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Bài 3: Hàm số lượng giác

HĐ6 trang 28 Toán 11 Tập 1Cho hàm số y = tan x.

a) Xét tính chẵn, lẻ của hàm số.

b) Hoàn thành bảng giá trị sau của hàm số y = tan x trên khoảng π2;π2 .

HĐ6 trang 28 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Bằng cách lấy nhiều điểm M(x; tan x) với x ∈ π2;π2  và nối lại ta được đồ thị hàm số y = tan x trên khoảng π2;π2 .

c) Bằng cách làm tương tự câu b cho các khoảng khác có độ dài bằng chu kì T = π, ta được đồ thị của hàm số y = tan x như hình dưới đây.

HĐ6 trang 28 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Từ đồ thị ở Hình 1.16, hãy tìm tập giá trị và các khoảng đồng biến của hàm số y = tan x.

Lời giải:

a) Hàm số y = f(x) = tan x có tập xác định là D = ℝ \ π2+kπ|k .

Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.

Ta có: f(– x) = tan (– x) = – tan x = – f(x), ∀ x ∈ D.

Vậy y = tan x là hàm số lẻ.

b) Ta có: tan 0 = 0, tanπ4=1,tanπ3=3,tanπ6=33 .

Vì y = tan x là hàm số lẻ nên tanπ4=tanπ4=1 , tanπ3=tanπ3=3 ,

tanπ6=tanπ6=33.

Vậy ta hoàn thành được bảng như sau:

HĐ6 trang 28 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

c) Quan sát Hình 1.16, ta thấy đồ thị hàm số y = tan x có:

+) Tập giá trị là ℝ;

+) Đồng biến trên mỗi khoảng π2+kπ;  π2+kπ,k  (do đồ thị hàm số đi lên từ trái sang phải trên mỗi khoảng này).

Đánh giá

0

0 đánh giá