Giải Toán 11 trang 27 Tập 1 Kết nối tri thức

276

Với lời giải Toán 11 trang 27 Tập 1 chi tiết trong Bài 3: Hàm số lượng giác sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Bài 3: Hàm số lượng giác

Luyện tập 5 trang 27 Toán 11 Tập 1Tìm tập giá trị của hàm số y = – 3cos x.

Lời giải:

Ta có: – 1 ≤ cos x ≤ 1 với mọi x ∈ ℝ.

Suy ra (– 3) . (– 1) ≥ – 3cos x ≥ (– 3) . 1 hay – 3 ≤ – 3cos x ≤ 3 với mọi x ∈ ℝ.

Vậy hàm số y = – 3cos x có tập giá trị là [– 3; 3].

Vận dụng 2 trang 27 Toán 11 Tập 1Trong Vật lí, ta biết rằng phương trình tổng quát của một vật dao động điều hòa cho bởi công thức x(t) = Acos(ωt + φ), trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0), ωt + φ là pha của dao động tại thời điểm t và φ ∈ [–π; π] là pha ban đầu của dao động. Dao động điều hòa này có chu kì T=2πω (tức là khoảng thời gian để vật thực hiện một dao động toàn phần).

Giả sử một vật dao động điều hòa theo phương trình x(t) = – 5cos 4πt (cm).

a) Hãy xác định biên độ và pha ban đầu của dao động.

b) Tính pha của dao động tại thời điểm t = 2 (giây). Hỏi trong khoảng thời gian 2 giây, vật thực hiện được bao nhiêu dao động toàn phần?

Lời giải:

a) Ta có: – 5cos 4πt = 5cos(4πt + π).

Khi đó vật dao động điều hòa theo phương trình x(t) = 5cos(4πt + π) (cm) với biên độ dao động là A = 5 > 0 và pha ban đầu của dao động là φ = π.

b) Pha của dao động tại thời điểm t = 2 (giây) là ωt + φ = 4π . 2 + π = 9π.

Dao động điều hòa có chu kì là T=2πω=2π4π=12=0,5, có nghĩa là khoảng thời gian để vật thực hiện một dao động toàn phần là 0,5 giây. Do đó, trong khoảng thời gian 2 giây, vật thực hiện được 2 : 0,5 = 4 dao động toàn phần.

Đánh giá

0

0 đánh giá