Các cạnh của hình vuông ban đầu có chiều dài 16 cm. Một hình vuông mới được hình thành bằng

3.5 K

Với giải Bài 2.29 trang 40 SBT Toán lớp 11 Kết nối tri thức chi tiết trong Bài 7: Cấp số nhân giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán lớp 11 Bài 7: Cấp số nhân

Bài 2.29 trang 40 SBT Toán 11 Tập 1: Các cạnh của hình vuông ban đầu có chiều dài 16 cm. Một hình vuông mới được hình thành bằng cách nối các điểm giữa của các cạnh của hình vuông ban đầu và hai trong số các hình tam giác kết quả được tô màu (hình vẽ dưới). Nếu quá trình này được lặp lại năm lần nữa, hãy xác định tổng diện tích của vùng được tô màu.

 Các cạnh của hình vuông ban đầu có chiều dài 16 cm Một hình vuông mới được hình thành

Lời giải:

Gọi un là diện tích hai tam giác được tô màu ở lần thực hiện thứ n.

Gọi a là độ dài cạnh của hình vuông ban đầu.

Hai tam giác được tạo thành là các tam giác vuông cân có độ dài cạnh góc vuông bằng 12 độ dài của hình vuông trước mỗi lần chia.

Ở lần 1 thì độ dài cạnh tam giác vuông cân là a2 nên u1 = 2.12.a22=a222 và độ dài cạnh hình vuông sau đó là a22+a22=a22 (sử dụng định lí Pythagore).

Ở lần 2 thì độ dài cạnh tam giác vuông cân là a2.22 nên u2=2.12.a2.222=a223.

Ở lần 3 thì độ dài cạnh tam giác vuông cân là a2.22.22, suy ra u3=a224.

Cứ tiếp tục như vậy, ta được dãy số (un) là cấp số nhân với u1=a222 và công bội q=12.

Với a = 16 cm thì u1 = 16222 = 64 cm.

Vậy tổng diện tích sau năm lần thực hiện là

S5=u11q51q=64.1125112 = 124 (cm2).

Đánh giá

0

0 đánh giá