Với giải Bài 2.19 trang 37 SBT Toán lớp 11 Kết nối tri thức chi tiết trong Bài 6: Cấp số cộng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:
Giải SBT Toán lớp 11 Bài 6: Cấp số cộng
Bài 2.19 trang 37 SBT Toán 11 Tập 1: Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là 35 000 đô la mỗi năm và được tăng thêm 1 400 đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là 319 200 đô la?
Lời giải:
Lương mỗi năm của anh Nam lập thành một cấp số cộng với số hạng đầu u1 = 35 000 và công sai d = 1 400.
Áp dụng công thức tính tổng n số hạng đầu của cấp số cộng với Sn = 319 200, u1 = 35 000, d = 1 400, ta có
319 200 = Sn = [2 . 35 000 + (n – 1) .1 400]
⇔ n(68 600 + 1 400n) = 638 400
⇔ 1 400n2 + 68 600n – 638 400 = 0
Suy ra n = 8 hoặc n = – 57 (loại). Do đó n = 8.
Vậy sau 8 năm làm việc thì tổng lương mà anh Nam nhận được là 319 200 đô la.
Xem thêm lời giải sách bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Xem thêm các bài giải SBT Toán lớp 11 Kết nối tri thức hay, chi tiết khác: