Một cầu thang bằng gạch có tổng cộng 30 bậc. Bậc dưới cùng cần 100 viên gạch

3.1 K

Với giải Bài 2.17 trang 37 SBT Toán lớp 11 Kết nối tri thức chi tiết trong Bài 6: Cấp số cộng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán lớp 11 Bài 6: Cấp số cộng

Bài 2.17 trang 37 SBT Toán 11 Tập 1: Một cầu thang bằng gạch có tổng cộng 30 bậc. Bậc dưới cùng cần 100 viên gạch. Mỗi bậc tiếp theo cần ít hơn hai viên gạch so với bậc ngay trước nó.

a) Cần bao nhiêu viên gạch cho bậc trên cùng?

b) Cần bao nhiêu viên gạch để xây cầu thang?

Lời giải:

Theo bài ra ta có số viên gạch ở mỗi bậc thang (tính từ dưới lên) lập thành một cấp số cộng gồm 30 số với số hạng đầu u1 = 100 và công sai d = – 2.

Do đó, công thức của cấp số cộng biểu thị số viên gạch cho mỗi bậc cầu thang như sau:

u1 = 100; un + 1 = u­+ (– 2) với n ≥ 1.

a) Bậc trên cùng là bậc thứ 30. Do đó, số viên gạch cần cho bậc trên cùng là

u30 = u1 + (30 – 1)d = 100 + 29 . (– 2) = 42 (viên gạch).

b) Ta có S30 = u1 + u2 + ... + u30 = Một cầu thang bằng gạch có tổng cộng 30 bậc Bậc dưới cùng cần 100 viên gạch

Như vậy, ta cần 2 130 viên gạch để xây cầu thang.

Đánh giá

0

0 đánh giá