Hai sóng âm có phương trình lần lượt là f1(t) = C sin ωt và f2(t) = C sin(ωt + α)

711

Với giải Bài 1.57 trang 29 SBT Toán lớp 11 Kết nối tri thức chi tiết trong Bài tập cuối chương 1 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán lớp 11 Bài tập cuối chương 1

Bài 1.57 trang 29 SBT Toán 11 Tập 1: Hai sóng âm có phương trình lần lượt là

f1(t) = C sin ωt và f2(t) = C sin(ωt + α).

Hai sóng này giao thoa với nhau tạo ra một âm kết hợp có phương trình

f(t) =  f1(t) + f2(t) = C sin ωt + C sin(ωt + α).

a) Sử dụng công thức cộng chỉ ra rằng hàm f(t) có thể viết được dưới dạng f(t) = A sin ωt + B cos ωt, ở đó A, B là hai hằng số phụ thuộc vào α.

b) Khi C = 10 và α=π3, hãy tìm biên độ và pha ban đầu của sóng âm kết hợp, tức là tìm hai hằng số k và φ sao cho f(t) = k sin(ωt + φ).

Lời giải:

a) Ta có f(t) = f1(t) + f­­2(t)

= C sin ωt + C sin(ωt + α)

= C sin ωt + C(sin ωt cos α + cos ωt sin α)

= C sin ωt + C sin ωt cos α + C cos ωt sin α

= C(1 + cos α) sin ωt + C sin α cos ωt.

Vậy f(t) = C(1 + cos α) sin ωt + C sin α cos ωt với A = C(1 + cos α) và B = C sin α.

b) Khi C = 10 và α=π3 ta có

ft=10sinωt+10sinωt+π3

 Hai sóng âm có phương trình lần lượt là f1(t) = C sinωt và f2(t) = C sin(ωt + α)

=10.2sinωt+ωt+π32cosωtωtπ32

=20sinωt+π6cosπ6

=103sinωt+π6.

Vậy biên độ và pha ban đầu của sóng âm kết hợp lần lượt là k=103 và φ=π6.

Đánh giá

0

0 đánh giá