Cho tam giác ABC vuông tại A. Gọi D, E, F lần lượt là trung điểm của AB, BC, AC

12.2 K

Với giải Bài 5 trang 80 VTH Toán lớp 8 Kết nối tri thức chi tiết trong Bài tập cuối chương 4 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải VTH Toán 8 Bài tập cuối chương 4

Bài 5 trang 80 vở thực hành Toán 8 Tập 1: Cho tam giác ABC vuông tại A. Gọi D, E, F lần lượt là trung điểm của AB, BC, AC.

a) Chứng minh rằng AE = DF.

b) Gọi I là trung điểm của DE. Chứng minh rằng ba điểm B, I, F thẳng hàng.

Lời giải:

Cho tam giác ABC vuông tại A. Gọi D, E, F lần lượt là trung điểm của AB

a) ∆ABC có: D là trung điểm AB, E là trung điểm BC, nên DE là đường trung bình của ∆ABC.

Suy ra DE // AC và DE = 12AC.

Xét tứ giác ADEF: DE // AF và DE = AF nên tứ giác ADEF là hình bình hành.

Ta lại có DAF^=90° nên tứ giác ADEF là hình chữ nhật.

Suy ra AE = DF.

b) ∆ABC có: D là trung điểm AB, F là trung điểm AC nên DF là đường trung bình của ∆ABC.

Suy ra DF // BC và DF = 12BC = BE.

Xét tứ giác BDFE: DF // BE và DF = BE nên tứ giác BDFE là hình bình hành.

Suy ra hai đường chéo DE và BF cắt nhau tại trung điểm của mỗi đường.

Ta lại có I là trung điểm của DE nên I cũng là trung điểm của BF.

Vậy B, I, F thẳng hàng.

Đánh giá

0

0 đánh giá