Cho M là một điểm nằm trong tam giác đều ABC. Qua M kẻ các đường thẳng song song với BC, CA, AB lần lượt cắt AB, BC, CA tại các điểm P, Q, R

1 K

Với giải Bài 4 trang 50 VTH Toán lớp 8 Kết nối tri thức chi tiết trong Luyện tập chung trang 49 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải VTH Toán 8 Luyện tập chung trang 49

Bài 4 trang 50 vở thực hành Toán 8 Tập 1: Cho M là một điểm nằm trong tam giác đều ABC. Qua M kẻ các đường thẳng song song với BC, CA, AB lần lượt cắt AB, BC, CA tại các điểm P, Q, R.

a) Chứng minh tứ giác APMR là hình thang cân.

b) Chứng minh rằng chu vi tam giác PQR bằng tổng độ dài MA + MB + MC.

c) Hỏi với vị trí nào của M thì tam giác PQR là tam giác đều.

Lời giải:

Cho M là một điểm nằm trong tam giác đều ABC

(H.3.17). a) Do MR // AP nên tứ giác APMR là hình thang.

Ta có A^=60° (do ∆ABC đều).

Do MP // BC nên B^=APM^=60°. Từ đó suy ra A^=APM^ nên APMR là hình thang cân.

b) Tương tự câu a, ta có các tứ giác BQMP và CRMQ là những hình thang cân.

Do APMR, BQMP và CRMQ là những hình thang cân, suy ra RP = AM, PQ = BM, QR = CM (hai đường chéo của hình thang cân).

Chu vi của tam giác PQR là

PQ + RP + QR = BM + AM + CM.

c) Tam giác PQR là tam giác đều có nghĩa là PQ = QR = RP, tức là MB = MC = MA.

Vậy M cách đều ba đỉnh A, B, C tức M là giao điểm của ba đường trung trực của tam giác ABC.

Phương pháp giải. 

Có hai dấu hiệu nhận biết hình thang cân:

  • Hình thang có hai góc kề một đáy bằng nhau là hình thang cân. 
  • Hình thang có hai đường chéo bằng nhau là hình thang cân.
Đánh giá

0

0 đánh giá