Với giải Bài 1.28 trang 33 Chuyên đề Toán 11 Kết nối tri thức chi tiết trong Bài tập cuối chuyên đề 1 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 11. Mời các bạn đón xem:
Giải Chuyên đề Toán 11 Bài tập cuối chuyên đề 1
Bài 1.28 trang 33 Chuyên đề Toán 11: Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 2x – y + 5 = 0. Viết phương trình đường thẳng d' là ảnh của đường thẳng d qua phép tịnh tiến theo vectơ .
Lời giải:
Cách 1:
Lấy A(0; 5), B(1; 7) thuộc đường thẳng d.
Gọi A', B' tương ứng là ảnh của A, B qua phép tịnh tiến theo vectơ .
Khi đó: và . Suy ra A'(– 3; 9) và B'(– 2; 11).
Vì đường thẳng d' là ảnh của đường thẳng d qua phép tịnh tiến theo vectơ nên hai điểm A', B' thuộc đường thẳng d'.
Ta có: , suy ra đường thẳng d' có một vectơ pháp tuyến là .
Phương trình đường thẳng d' là 2(x + 3) – (y – 9) = 0 hay 2x – y + 15 = 0.
Cách 2:
Gọi M(x; y) thuộc đường thẳng d và M'(x'; y') là ảnh của điểm M qua phép tịnh tiến theo vectơ . Khi đó .
Ta có M thuộc ∆ ⇔ 2x – y + 5 = 0 ⇔ 2(x' + 3) – (y' – 4) + 5 = 0 ⇔ 2x' – y' + 15 = 0. Do đó, M'(x'; y') thuộc đường thẳng có phương trình 2x – y + 15 = 0.
Vì đường thẳng d' là ảnh của đường thẳng d qua phép tịnh tiến theo vectơ nên M' thuộc đường thẳng d'.
Vậy phương trình đường thẳng d' là 2x – y + 15 = 0.
Xem thêm lời giải bài tập Chuyên đề học tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Xem thêm các bài giải chuyên đề học tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Bài 8: Một vài khái niệm cơ bản
Bài 9: Đường đi Euler và đường đi Hamilton
Bài 10: Bài toán tìm đường tối ưu trong một vài trường hợp đơn giản
Xem thêm các bài giải chuyên đề học tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Chuyên đề 1: Phép biến hình trong mặt phẳng
Chuyên đề 2: Làm quen với một vài khái niệm của lí thuyết đồ thị