Tailieumoi.vn giới thiệu giải Chuyên đề Toán lớp 11 Bài 4: Phép quay và phép đối xứng tâm sách Kết nối tri thức hay, chi tiết giúp học sinh xem và so sánh lời giải từ đó biết cách làm Chuyên đề học tập Toán 11. Mời các bạn đón xem:
Giải Chuyên đề Toán 11 Bài 4: Phép quay và phép đối xứng tâm
Lời giải:
Cơ sở toán học về khái niệm phép quay cho ta thực hiện điều nêu ở phần mở đầu.
1. Phép quay
Lời giải:
Mỗi đĩa thức ăn không đặt ở chính giữa bàn nhưng đặt ở trên phần bàn xoay đều quay được một phần tư vòng tới vị trí mới.
Mỗi đĩa thức ăn không đặt ở giữa bàn và không đặt ở trên phần bàn xoay thì không quay được một phần tư vòng tới vị trí mới.
Câu hỏi trang 16 Chuyên đề Toán 11: Phép quay với góc quay bằng 0 có gì đặc biệt?
Lời giải:
Phép quay tâm O với góc quay bằng 0 biến điểm O thành điểm O và biến mỗi điểm M khác O thành chính nó.
Luyện tập 1 trang 17 Chuyên đề Toán 11: Trong Hình 1.22, tam giác ABC đều.
Hãy chỉ ra ảnh của điểm B qua phép quay Q(A, 60°).
Gọi D là ảnh của C qua phép quay Q(A, 60°).
Hỏi B và D có mối quan hệ gì đối với đường thẳng AC?
Lời giải:
Tam giác ABC đều nên AB = AC và . Do đó phép quay Q(A, 60°) biến điểm B thành điểm C.
Vì D là ảnh của C qua phép quay Q(A, 60°) nên AC = AD và .
Khi đó tam giác ACD là tam giác đều nên AC = AD = DC.
Mà AB = AC = BC (tam giác ABC đều).
Do đó, AB = BC = CD = AD, suy ra tứ giác ABCD là hình thoi.
Khi đó hai đường cheoa AC và BD vuông góc với nhau và cắt nhau tại trung điểm của mỗi đường nên AC là đường trung trực của đoạn thẳng BD.
Vậy B và D đối xứng nhau qua đường thẳng AC hay B là ảnh của D qua phép đối xứng trục AC.
2. Tính chất của phép quay
Lời giải:
Khoảng cách giữa hai đĩa thức ăn không bị thay đổi khi mặt bàn ăn quay.
Lời giải:
Ta có: ABCDEF là lục giác đều nên và OA = OB = OC = OD = OE = OF.
Do đó, phép quay biến các điểm A, C, E tương ứng thành các điểm B, D, F.
Vậy phép quay biến tam giác ACE thành tam giác BDF.
Ta có: , tương tự .
Vì OA = OE và góc quay nên phép quay biến điểm A thành điểm E.
Vì OC = OA và góc quay nên phép quay biến điểm C thành điểm A.
Vì OE = OC và góc quay nên phép quay biến điểm E thành điểm C.
Vậy phép quay biến tam giác ACE thành tam giác ECA hay biến tam giác ACE thành chính nó.
- Điểm O biến thành điểm nào?
- Đường tròn (O, R) biến thành đường tròn nào?
- Vị trí của mặt bàn có bị dịch chuyển hay không?
Lời giải:
Điểm O là tâm quay nên khi thực hiện phép quay tâm O với góc quay α bất kì thì điểm O biến thành điểm O, đường tròn (O; R) biến thành đường tròn (O; R).
Vậy vị trí của mặt bàn không bị dịch chuyển.
Bài tập
Lời giải:
Tam giác BAM vuông cân tại A nên AB = AM và . Do đó, ta có phép quay Q(A, – 90°) biến điểm A thành điểm A, biến điểm B thành điểm M (1).
Tam giác ACN vuông cân tại A nên AC = AN và . Do đó, ta có phép quay Q(A, – 90°) biến điểm C thành điểm N (2).
Từ (1) và (2) suy ra phép quay Q(A, – 90°) biến tam giác ABC thành tam giác AMN.
a) Tìm ảnh của các điểm A, B, C, D qua phép quay tâm O góc quay .
b) Mỗi phép quay Q(O, o), biến hình vuông ABCD thành hình nào?
Lời giải:
a) Vì ABCD là hình vuông nên hai đường chéo AC và BD vuông góc với nhau tại tâm O và OA = OB = OC = OD.
Khi đó, phép quay biến các điểm A, B, C, D tương ứng thành các điểm B, C, D, A.
b) Phép quay Q(O, 0) biến hình vuông ABCD thành hình vuông ABCD.
Từ câu a, suy ra phép quay biến hình vuông ABCD thành hình vuông BCDA.
Phép quay Q(O, π) biến các điểm A, B, C, D tương ứng thành các điểm C, D, A, B. Do đó phép quay Q(O, π) biến hình vuông ABCD thành hình vuông CDAB.
Phép quay biến các điểm A, B, C, D tương ứng thành các điểm D, A, B, C. Do đó phép quay biến hình vuông ABCD thành hình vuông DABC.
Bài 1.13 trang 20 Chuyên đề Toán 11: Cho hình bình hành ABCD với tâm O.
a) Tìm ảnh của đường thẳng AB qua phép đối xứng tâm O.
b) Tìm ảnh của tam giác ABC qua phép đối xứng tâm O.
Lời giải:
Vì ABCD là hình bình hành nên tâm O là trung điểm các đường chéo AC và BD.
O là trung điểm của AC nên C là ảnh của A qua ĐO.
O là trung điểm của BD nên D là ảnh của B qua ĐO.
Do đó, CD là ảnh của đường thẳng AB qua ĐO.
Lại có A là ảnh của C qua ĐO. Vậy tam giác CDA là ảnh của tam giác ABC qua ĐO.
a) Tìm tọa độ tâm đường tròn (C') là ảnh của đường tròn (C) qua
b) Viết phương trình (C').
Lời giải:
Ta có (C): (x – 2)2 + y2 = 1. Suy ra đường tròn (C) có tâm I(2; 0) và bán kính R = 1.
Vì (C') là ảnh của đường tròn (C) qua phép quay nên tâm I' của đường tròn (C') là ảnh của tâm I của đường tròn (C) qua phép quay .
Vì I(2; 0) nên I'(0; 2).
b) Phép quay biến đường tròn thành đường tròn có cùng bán kính nên bán kính của đường tròn (C') là 1.
Vậy phương trình đường tròn (C') là x2 + (y – 2)2 = 1.
Lời giải:
Ta có thể chia Hình 1.32 thành ba phần giống nhau bằng cách cắt theo đường màu đỏ như hình vẽ trên ( ).
Sử dụng phép quay Q(O, 120°) để thấy rõ các phần giống nhau của hình.
Xem thêm các bài giải chuyên đề học tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Bài 4: Phép quay và phép đối xứng tâm
Xem thêm các bài giải chuyên đề học tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Chuyên đề 1: Phép biến hình trong mặt phẳng
Chuyên đề 2: Làm quen với một vài khái niệm của lí thuyết đồ thị
Chuyên đề 3: Một số yếu tố vẽ kĩ thuật