Tailieumoi.vn giới thiệu giải Chuyên đề Toán lớp 11 Bài 1: Phép biến hình sách Kết nối tri thức hay, chi tiết giúp học sinh xem và so sánh lời giải từ đó biết cách làm Chuyên đề học tập Toán 11. Mời các bạn đón xem:
Giải Chuyên đề Toán 11 Bài 1: Phép biến hình
1. Phép biến hình
Trong một lần chơi, là người đặt xu trước, Hoa đặt đồng xu đầu tiên tại vị trí O ở chính giữa mảnh giấy, và sau đó, ở mỗi lượt đặt xu, nếu Hưng đặt đồng xu ở vị trí M thì Hoa đặt ở vị trí M' đối xứng với M qua O. Hỏi trong lần chơi nói trên, ai là người thắng cuộc?
Lời giải:
Ta đã biết với mỗi điểm M trong mặt phẳng thì có duy nhất một điểm M' đối xứng với M qua điểm O cho trước. Chính vì vậy, nếu Hưng đặt đồng xu ở vị trí M, Hoa đặt đồng xu ở ví trí M' đối xứng với M qua O (vị trí chính giữa tờ giấy mà Hoa đặt trước), thì mỗi lần Hưng đặt đồng xu tiếp sau, Hoa đều xác định được duy nhất một vị trí để đặt đồng xu của mình tương ứng, cứ như vậy, Hoa sẽ đặt được đồng xu lên vị trí cuối cùng còn trống của mảnh giấy, do đó Hưng sẽ là người đầu tiên không còn chỗ để đặt xu. Vậy Hưng là người thua cuộc và Hoa là người thắng cuộc.
2. Ảnh của một hình qua một phép biến hình
a) Xét các điểm A(– 1; 5), B(2; 2), C(4; 0) thuộc ∆: x + y – 4 = 0. Xác định các ảnh của chúng qua f.
b) Chứng minh rằng nếu M(x0; y0) là điểm thuộc đường thẳng ∆: x + y – 4 = 0 thì ảnh M'(x0 + 1; y0 + 2) của nó thuộc đường thẳng ∆': x+ y – 7 = 0.
Lời giải:
a) Ảnh của điểm A(– 1; 5) qua phép biến hình f là điểm A'(– 1 + 1; 5 + 2) hay A'(0; 7).
Ảnh của điểm B(2; 3) qua phép biến hình f là điểm B'(2 + 1; 3 + 2) hay B'(3; 5).
Ảnh của điểm C(4; 0) qua phép biến hình f là điểm C'(4 + 1; 0 + 2) hay C'(5; 2).
b) Vì M(x0; y0) thuộc ∆: x + y – 4 = 0 nên x0 + y0 – 4 = 0 hay x0 + y0 = 4
⇔ x0 + y0 + 3 = 4 + 3
⇔ (x0 + 1) + (y0 + 2) = 7
⇔ (x0 + 1) + (y0 + 2) – 7 = 0
Suy ra M'(x0 + 1; y0 + 2) thuộc đường thẳng ∆': x + y – 7 = 0.
Lời giải:
Quan sát Hình 1.4, ta thấy hình phía bên phải hình ở giữa giống ảnh của hình ở giữa qua một phép co về trục.
Bài tập
Lời giải:
Phép biến hình f biến điểm I thành chính nó và biến mỗi điểm M khác I thành điểm M' sao cho I là trung điểm của MM'.
Vì A(3; – 2) ≠ I(1; 2) nên phép biến hình f biến điểm A thành điểm A' sao cho I là trung điểm của AA'. Do đó .
Vậy ảnh của điểm A qua phép biến hình f là điểm A'(– 1; 6).
Lời giải:
Xem thêm các bài giải chuyên đề học tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Bài 4: Phép quay và phép đối xứng tâm
Xem thêm các bài giải chuyên đề học tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Chuyên đề 1: Phép biến hình trong mặt phẳng
Chuyên đề 2: Làm quen với một vài khái niệm của lí thuyết đồ thị
Chuyên đề 3: Một số yếu tố vẽ kĩ thuật