Cho đường thẳng ∆ và hai điểm A, B, sao cho ∆ không phải là đường trung trực của đoạn thẳng AB

496

Với giải Luyện tập 3 trang 15 Chuyên đề Toán 11 Kết nối tri thức chi tiết trong Bài 3: Phép đối xứng trục giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 11. Mời các bạn đón xem:

Giải Chuyên đề Toán 11 Bài 3: Phép đối xứng trục

Luyện tập 3 trang 15 Chuyên đề Toán 11: Cho đường thẳng ∆ và hai điểm A, B, sao cho ∆ không phải là đường trung trực của đoạn thẳng AB. Điểm M thay đổi trên ∆ (M không thuộc đường thẳng AB). Gọi M' là điểm sao cho A, B, M, M' là 4 đỉnh của một hình thang cân nhận AB là một cạnh đáy. Chứng minh rằng M' thay đổi trên một đường thẳng cố định.

Lời giải:

Luyện tập 3 trang 15 Chuyên đề học tập Toán 11 Kết nối tri thức

Gọi d là đường trung trực của đoạn thẳng AB. Vì AB cố định nên d cố định.

Do A, B, M, M' là 4 đỉnh của hình thang cân nhận AB là một cạnh đáy nên MM' là đáy còn lại của hình thang cân và đường trung trực d của đoạn thẳng AB cũng là đường trung trực của đoạn thẳng MM'. Do đó M' là ảnh của điểm M qua phép đối xứng trục d.

Mặt khác, M thuộc đường thẳng ∆ nên M' thuộc đường thẳng ∆' là ảnh của đường thẳng ∆ qua phép đối xứng trục d.

Vậy rằng M' thay đổi trên một đường thẳng cố định ∆' là ảnh của đường thẳng ∆ qua phép đối xứng trục d.

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá