Với tóm tắt lý thuyết Toán lớp 8 Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến sách Cánh diều hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 8.
Lý thuyết Toán lớp 8 Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến
A. Lý thuyết Đơn thức nhiều biến. Đa thức nhiều biến
1. Đơn thức nhiều biến
Đơn thức nhiều biến (hay đơn thức) là biểu thức đại số chỉ gồm một số hoặc một biến, hoặc một tích giữa các số và các biến.
Số 0 được gọi là đơn thức không.
Ví dụ: là các đơn thức.
Đơn thức thu gọn là đơn thức chỉ gồm một số với các biến, mà mỗi biến đã được nâng lên lũy thừa với số mũ nguyên dương và chỉ được viết một lần.
Ví dụ:
là các đơn thức thu gọn.
không phải là các đơn thức thu gọn.
Trong một đơn thức thu gọn, phần số còn gọi là hệ số, phần còn lại gọi là phần biến.
Ví dụ: đơn thức có hệ số là 3, phần biến là .
Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến.
Ví dụ:
Hai đơn thức và có hệ số khác 0 và có cùng phần biến nên chúng là hai đơn thức đồng dạng.
Hai đơn thức và không có cùng phần biến nên chúng không phải là hai đơn thức đồng dạng.
Cộng, trừ các đơn thức đồng dạng
Để cộng (hay trừ) các đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến.
Ví dụ:
2. Đa thức nhiều biến
Đa thức nhiều biến (hay đa thức) là một tổng của những đơn thức.
Chú ý: Mỗi đơn thức được gọi là một đa thức.
Ví dụ: là đa thức.
không phải là đa thức.
Thu gọn đa thức nhiều biến là làm cho trong đa thức đó không còn hai đơn thức nào đồng dạng.
Ví dụ:
Tính giá trị của đa thức
Để tính giá trị của một đa thức tại những giá trị cho trước của các biến, ta thay những giá trị cho trước đó vào biểu thức xác định đa thức rồi thực hiện phép tính.
Ví dụ: Giá trị của biểu thức tại x = 2, y = 1 là:
Sơ đồ tư duy Đơn thức và đa thức nhiều biến.
B. Bài tập Đơn thức nhiều biến. Đa thức nhiều biến
Bài 1. Thu gọn các đơn thức sau:
a) 12xy5x3y2z;
b) x2y3y3z.
Hướng dẫn giải
a) 12xy5x3y2z = 12 . (x . x3) . (y5.y2) . z
= 12x4y7z
b) x2y3y3z = . x2 . ( y3 . y3) . z
= x2y5z
Bài 2. Thu gọn các đa thức sau:
a) 15xy + 3 + 2xy +5;
b) 2,7x2y + 1,3xy2 – 1,7x2y + 4,7xy2 – 15.
Hướng dẫn giải
a) 15xy + 3 + 2xy +5 = (15xy + 2xy) + (3 + 5)
= 17xy + 8.
b) 2,7x2y + 1,3xy2 – 1,7x2y + 4,7xy2 – 15
= (2,7x2y – 1,7x2y) + (1,3xy2 + 4,7xy2) – 15
= x2y + 6xy2 – 15.
Bài 3. Tính giá trị của đa thức sau:
P = x2y – 12x3y + xy – 27 tại x = 1; y = 2.
Hướng dẫn giải
Thay x = 1; y = 2 vào biểu thức P, ta được:
P = 12 . 2 – 12 . 13 . 2 + 1 . 2 – 27
= 2 – 24 + 2 – 27 = – 47.
Vậy với x = 1; y = 2 thì giá trị của biểu thức P = – 47.
Video bài giảng Toán 8 Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến Cánh diều
Xem thêm các bài tóm tắt Lý thuyết Toán lớp 8 Cánh diều hay, chi tiết khác:
Lý thuyết Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến
Lý thuyết Bài 2: Các phép tính với đa thức nhiều biến
Lý thuyết Bài 3: Hằng đẳng thức đáng nhớ
Lý thuyết Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử
Lý thuyết Bài 1: Phân thức đại số
Lý thuyết Bài 2: Phép cộng, phép trừ phân thức đại số