Với tóm tắt lý thuyết Toán lớp 11 Bài 15: Giới hạn của dãy số sách Kết nối tri thức hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 11.
Lý thuyết Toán lớp 11 Bài 15: Giới hạn của dãy số
A. Lý thuyết Giới hạn của dãy số
1. Giới hạn hữu hạn của dãy số
Ta nói dãy số có giới hạn 0 khi n dần tới dương vô cực, nếu có thể nhỏ hơn một số dương bé tùy ý , kể tử một số hạng nào đó trở đi, kí hiệu hay khi .
Ta nói dãy số có giới hạn là số thực a khi n dần tới dương vô cực, nếu , kí hiệu hay khi .
* Chú ý: Nếu (c là hằng số) thì
2. Định lí về giới hạn hữu hạn của dãy số
a, Nếu thì
b, Nếu thì với mọi n và thì và .
3. Tổng của cấp số nhân lùi vô hạn
4. Giới hạn vô cực của dãy số
Dãy số được gọi là có giới hạn khi nếu có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi, kí hiệu hay khi .
Dãy số được gọi là có giới hạn khi nếu , kí hiệu hay khi .
*Quy tắc:
Nếu và (hoặc) thì .
Nếu và thì .
Nếu và thì .
Sơ đồ tư duy Giới hạn của dãy số.
B. Bài tập Giới hạn của dãy số
Bài 1: Tìm các giới hạn sau:
a) (2n3-3n+2);
b) ;
c)
Hướng dẫn giải
a)(2n3-3n+2) = = +
Vì và = 2.
b) = 2.
c)
Bài 2: Cho hai dãy số không âm (un) và (vn) với và . Tìm giới hạn của: .
Hướng dẫn giải
Ta có: , do đó (vn . un) = 5.5 = 25.
(vn - un) = 5-3 = 2.
Vậy = .
Bài 3: Tính tổng của cấp số nhân lùi vô hạn: 3; – 1;
Hướng dẫn giải
un là cấp số nhân lùi vô hạn có số hạng đầu u1 = 3 và công bội q = .
Tổng của cấp số nhân này là: S = = .
Bài 4: Một cấp số nhân lùi vô hạn có tổng các số hạng bằng 56, tổng bình phương các số hạng bằng 448. Số hạng đầu tiên của cấp số nhân đó là bao nhiêu?
Hướng dẫn giải
⇒
Suy ra: q = .
Ta tìm được: u1 = 14.
Video bài giảng Toán 11 Bài 15: Giới hạn của dãy số - Kết nối tri thức
Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Lý thuyết Bài 14: Phép chiếu song song
Lý thuyết Bài 15: Giới hạn của dãy số
Lý thuyết Bài 16: Giới hạn của hàm số
Lý thuyết Bài 17: Hàm số liên tục
Xem thêm các bài tóm tắt lý thuyết chương Toán lớp 11 Kết nối tri thức hay, chi tiết khác
Lý thuyết Chương 1: Hàm số lượng giác và phương trình lượng giác
Lý thuyết Chương 2: Dãy số. Cấp số cộng và cấp số nhân
Lý thuyết Chương 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu ghép nhóm
Lý thuyết Chương 4: Quan hệ song song trong không gian
Lý thuyết Chương 5: Giới hạn. Hàm số liên tục