Luyện tập 2 trang 49 Toán 11 Tập 1 Kết nối tri thức | Giải bài tập Toán lớp 11

372

Với giải Luyện tập 2 trang 49 Toán 11 Tập 1 Kết nối tri thức chi tiết trong Bài 6: Cấp số cộng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 6: Cấp số cộng

Luyện tập 2 trang 49 Toán 11 Tập 1: Cho dãy số (un) với un = 4n – 3. Chứng minh rằng (un) là một cấp số cộng. Xác định số hạng đầu u1 và công sai d của của cấp số cộng này. Từ đó viết số hạng tổng quát u dưới dạng un = u1 + (n – 1)d.

Lời giải:

Ta có: un – un – 1 = (4n – 3) – [4(n – 1) – 3] = 4n – 3 – (4n – 4 – 3) = 4, với mọi n ≥ 2.

Do đó, dãy số (un) là một cấp số cộng với số hạng đầu u1 = 4 . 1 – 3 = 1 và công sai d = 4.

Số hạng tổng quát là: un = 1 + (n – 1) . 4

Lý thuyết Số hạng tổng quát

Nếu cấp số cộng (un) có số hạng đầu là u1 và công sai d thì số hạng tổng quát uncủa nó được xác định theo công thức un=u1+(n1)d,n2.

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá