Luyện tập 1 trang 49 Toán 11 Tập 1 Kết nối tri thức | Giải bài tập Toán lớp 11

375

Với giải Luyện tập 1 trang 49 Toán 11 Tập 1 Kết nối tri thức chi tiết trong Bài 6: Cấp số cộng  giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 6: Cấp số cộng

Luyện tập 1 trang 49 Toán 11 Tập 1: Cho dãy số (un) với un = – 2n + 3. Chứng minh rằng (un) là một cấp số cộng. Xác định số hạng đầu và công sai của cấp số cộng này.

Lời giải:

Ta có: un – 1 = – 2(n – 1) + 3 = – 2n + 2 + 3 = – 2n + 5

Do đó, un – un – 1 = (– 2n + 3) – (– 2n + 5) = – 2, với mọi n ≥ 2.

Vậy dãy số (un) là cấp số cộng có số hạng đầu là u1 = – 2 . 1 + 3 = 1 và công sai d = – 2.

Lý thuyết Số hạng tổng quát

Nếu cấp số cộng (un) có số hạng đầu là u1 và công sai d thì số hạng tổng quát uncủa nó được xác định theo công thức un=u1+(n1)d,n2.

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá