HĐ 5 trang 108 Toán 11 Tập 1 Kết nối tri thức | Giải bài tập Toán lớp 11

501

Với giải HĐ 5 trang 108 Toán 11 Tập 1 Kết nối tri thức chi tiết trong Bài 15: Giới hạn của dãy số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 15: Giới hạn của dãy số

HĐ5 trang 108 Toán 11 Tập 1: Nhận biết giới hạn vô cực

Một loại vi khuẩn được nuôi cấy với số lượng ban đầu là 50. Sau mỗi chu kì 4 giờ, số lượng của chúng sẽ tăng gấp đôi.

a) Dự đoán công thức tính số vi khuẩn un sau chu kì thứ n.

b) Sau bao lâu, số lượng vi khuẩn sẽ vượt con số 10 000?

Lời giải:

a) Ta có số lượng ban đầu của vi khuẩn là u0 = 50.

Sau chu kì thứ nhất, số lượng vi khuẩn là u1 = 2u0 = 2 . 50.

Sau chu kì thứ hai, số lượng vi khuẩn là u2 = 2u1 = 2 . 2 . 50 = 22 . 50.

Cứ tiếp tục như vậy, ta dự đoán được sau chu kì thứ n, số lượng vi khuẩn là un = 2n . 50.

b) Giả sử sau chu kì thứ k, số lượng vi khuẩn sẽ vượt con số 10 000.

Khi đó ta có uk = 2k . 50 > 10 000 ⇔ 2k > 200.

Lý thuyết Giới hạn vô cực của dãy số

Dãy số (un) được gọi là có giới hạn +khi n+nếu un có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi, kí hiệu limx+un=+ hay un+ khi n+.

 

Dãy số (un) được gọi là có giới hạn  khi n+ nếu limx+(un)=+, kí hiệu limx+un= hay un khi n+.

*Quy tắc:

Nếu limx+un=a và limx+vn=+(hoặclimx+vn=) thì limn+(unvn)=0.

Nếu limx+un=a>0 và limx+vn=0,n thì limn+(unvn)=+.

Nếu limx+vn=a>0 và limx+un=+ thì limn+(un.vn)=+.

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá