Hoạt động khám phá 3 trang 22 Toán 11 Tập 1 Chân trời sáng tạo | Giải bài tập Toán lớp 11

249

Với giải Hoạt động khám phá 3 trang 22 Toán 11 Tập 1 Chân trời sáng tạo chi tiết trong Bài 3: Các công thức lượng giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 3: Các công thức lượng giác

Hoạt động khám phá 3 trang 22 Toán 11 Tập 1: Từ công thức cộng, hãy tính tổng và hiệu của:

a) cos(α – β) và cos(α + β) ;

b) sin(α – β) và sin(α + β) .

Lời giải:

a) Ta có: cos(α – β) = cosα.cosβ + sinα.sinβ; cos(α + β)

= cosα.cosβ – sinα.sinβ

Khi đó:

cos(α – β) + cos(α + β) = cosα.cosβ + sinα.sinβ + cosα.cosβ – sinα.sinβ

= 2cosα.cosβ.

cos(α – β) – cos(α + β) = cosα.cosβ + sinα.sinβ – cosα.cosβ + sinα.sinβ

= 2sinα.sinβ .

b) Ta có: sin(α – β) = sinα.cosβ + cosα.sinβ; sin(α + β)

= sinα.cosβ – cosα.sinβ

Khi đó:

sin(α – β) + sin(α + β) = sinα.cosβ + cosα.sinβ + sinα.cosβ – cosα.sinβ

= 2sinα.cosβ.

sin(α – β) – sin(α + β) = sinα.cosβ + cosα.sinβ – sinα.cosβ + cosα.sinβ

= 2cosα.sinβ.

Lý thuyết Công thức biến đổi tích thành tổng

cosacosb=12[cos(a+b)+cos(ab)]sinasinb=12[cos(ab)cos(a+b)]sinacosb=12[sin(a+b)+sin(ab)]

Đánh giá

0

0 đánh giá