HĐ Khám phá 2 trang 89 Toán 10 Tập 1 | Chân trời sáng tạo Giải Toán lớp 10

296

Với giải HĐ Khám phá 2 trang 89 Toán lớp 10 Chân trời sáng tạo chi tiết trong Bài 2: Tổng và hiệu của hai vecto học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Giải bài tập Toán lớp 10 Bài 2: Tổng và hiệu của hai vecto

HĐ Khám phá 2  trang 89 Toán lớp 10: Cho hình bình hành ABCD (Hình 4). Chứng minh rằng: AB+AD=AC

Phương pháp giải:

Tìm vectơ bằng với vectơ AD, sau đó áp dụng quy tắc ba điểm  

Lời giải:

Vì ABCD là hình bình hành nên ta có: AD=BCAB+AD=AB+BC=AC (đpcm)

Lý thuyết Tổng của hai vectơ

Cho hai vectơ a và b. Từ một điểm A tùy ý, lấy hai điểm B, C sao cho AB=a,  BC=b. Khi đó AC được gọi là tổng của hai vectơ a và b và được kí hiệu là a+b.

Vậy a+b=AB+BC=AC.

Phép toán tìm tổng của hai vectơ được gọi là phép cộng vectơ.

Quy tắc ba điểm

Với ba điểm M, N, P, ta có MN+NP=MP.

Chú ý: Khi cộng vectơ theo quy tắc ba điểm, điểm cuối của vectơ thứ nhất phải là điểm đầu của vectơ thứ hai.

Ví dụ: Cho các điểm A, B, C, D, E, F phân biệt. Thực hiện phép cộng các vectơ:

AC+CD;  BC+CB;  DC+CE+EF.

Hướng dẫn giải

Áp dụng quy tắc ba điểm, ta có:

AC+CD=AD.

BC+CB=BB=0.

DC+CE+EF=DE+EF=DF.

Quy tắc hình bình hành

Nếu OACB là hình bình hành thì ta có OA+OB=OC.

Ví dụ: Cho hình chữ nhật MNPQ và hai vectơ x,  y như hình bên. Tính tổng của hai vectơ x và y.

Hướng dẫn giải

Ta có x=AD,  y=AB.

Suy ra x+y=AD+AB.

Theo quy tắc hình bình hành, ta có AD+AB=AC.

Vậy x+y=AC.

Từ khóa :
toán 10
Đánh giá

0

0 đánh giá