Giải Toán 10 trang 70 Tập 1 Kết nối tri thức

270
Với Giải toán lớp 10 trang 70 Tập 1 Kết nối tri thức chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:
 
Giải Toán 10 trang 70 Tập 1 Kết nối tri thức

Luyện tập 4 trang 70 Toán lớp 10: Cho tam giác ABC với A(-1; 2), B(8; -1), C(8; 8). Gọi H là trực tâm của tam giác.

a) Chứng minh rằng AH.BC=0 và BH.CA=0

b) Tìm tọa độ của H.

c) Giải tam giác ABC.

HĐ4 trang 68 Toán lớp 10 Tập 1 | Kết nối tri thức (ảnh 1)

Phương pháp giải:

a)  uvu.v=0

b) Lập hệ PT biết AH.BC=0 và BH.CA=0.

c) Nếu vectơ AB(x;y) thì |AB|=x2+y2

Lời giải:

HĐ4 trang 68 Toán lớp 10 Tập 1 | Kết nối tri thức (ảnh 2)

a) AHBC và BHCA

(AH,BC)=90ocos(AH,BC)=0 . Do đó AH.BC=0

Tương tự suy ra BH.CA=0.

b) Gọi H có tọa độ (x; y)

{AH=(x(1);y2)=(x+1;y2)BH=(x8;y(1))=(x8;y+1)

Ta có: AH.BC=0 và BC=(88;8(1))=(0;9)

(x+1).0+(y2).9=09.(y2)=0y=2.

Lại có: BH.CA=0 và CA=(18;28)=(9;6)

(x8).(9)+(y+1).(6)=09x+72+3.(6)=09x+54=0x=6.

Vậy H có tọa độ (6; 2)

c) Ta có: AB=(8(1);12)=(9;3)AB=|AB|=92+(3)2=310

Và  BC=(0;9)BC=|BC|=02+92=9;

CA=(9;6)AC=|CA|=(9)2+(6)2=313.

Áp dụng định lí cosin cho tam giác ABC, ta có:

cosA^=b2+c2a22bc=(313)2+(310)2(9)22.313.3100,614A^52,125o

cosB^=a2+c2b22ac=(9)2+(310)2(313)22.9.310=1010B^71,565o

C^56,31o

Vậy tam giác ABC có: a=9;b=313;c=310A^52,125o;B^71,565o;C^56,31o.

Vận dụng trang 70 Toán lớp 10: Một lực F không đổi tác động vào một vật và điểm đặt của lực chuyển động thẳng từ A đến B. Lực F được phân tích thành hai lực thành phần là F1 và F2 (F=F1+F2).

a) Dựa vào tính chất của tích vô hướng, hãy giải thích vì sao công sinh bởi lực F (đã được đề cập ở trên) bằng tổng của các công sinh bởi các lực F1 và F2.

b) Giả sử các lực thành phần F1F2tương ứng cùng phương, vuông góc với phương chuyển động của vật. Hãy tìm mối quan hệ giữa các công sinh bởi lực F và lực F1.

Luyện tập 4 trang 70 Toán lớp 10 Tập 1 | Kết nối tri thức (ảnh 1)

Phương pháp giải:

Khi lực F không đổi tác dụng lên một vật và điểm đặt chuyển dời một đoạn s theo hướng hợp với hướng của lực góc α thì công sinh bởi lực đó là: A=F.s.cosα

Lời giải:

a)

 Luyện tập 4 trang 70 Toán lớp 10 Tập 1 | Kết nối tri thức (ảnh 2)

Gọi A,A1,A2 lần lượt là công sinh bởi lực FF1 và F2.

Ta cần chứng minh: A=A1+A2

Xét lực F, công sinh bởi lực F là: A=|F|.AB.cos(F,AB)=F.AB

Tương tự, ta có: A1=F1.ABA2=F2.AB

Áp dụng tính chất của tích vô hướng ta có:

A1+A2=F1.AB+F2.AB=(F1+F2).AB=F.AB=A

b)

 Luyện tập 4 trang 70 Toán lớp 10 Tập 1 | Kết nối tri thức (ảnh 3)

Vì F2tương ứng vuông góc với phương chuyển động nên F2AB

Do đó: công sinh bởi lực F2 là: A2=F2.AB=0

Mà A=A1+A2

A=A1

Vậy công sinh bởi lực F bằng công sinh bởi lực F1.

Bài tập

Bài 4.21 trang 70 Toán lớp 10: Trong mặt phẳng tọa độ Oxy, hãy tính góc giữa hai vectơ a và b trong mỗi trường hợp sau:

a) a=(3;1),b=(2;6)

b) a=(3;1),b=(2;4)

c) a=(2;1),b=(2;2)

Phương pháp giải:

Tính góc giữa hai vectơ dựa vào tích vô hướng: cos(a,b)=a.b|a|.|b|

Lời giải:

a) 

a.b=(3).2+1.6=0

ab hay (a,b)=90o.

b)

{a.b=3.2+1.4=10|a|=32+12=10;|b|=22+42=25

cos(a,b)=1010.25=22(a,b)=45o

c) Dễ thấy: a và b cùng phương do 22=12

Hơn nữa: b=(2;2)=2.(2;1)=2.a2<0

Do đó: a và b ngược hướng.

(a,b)=180o

Chú ý:

Khi tính góc, ta kiểm tra các trường hợp dưới đây trước:

+  (a,b)=90o: nếu a.b=0

a và b cùng phương: 

(a,b)=0o nếu a và b cùng hướng

(a,b)=0o nếu a và b ngược hướng

Nếu không thuộc các trường hợp trên thì ta tính góc dựa vào công thức cos(a,b)=a.b|a|.|b|

Bài 4.22 trang 70 Toán lớp 10: Tìm điều kiện của u,v để:

a) u.v=|u|.|v|

b) u.v=|u|.|v|

Phương pháp giải:

Tích vô hướng u.v=|u|.|v|.cos(u,v)

Lời giải:

a) 

Ta có: u.v=|u|.|v|.cos(u,v)=|u|.|v|

cos(u,v)=1(u,v)=0o

Nói cách khác: u,v cùng hướng.

b)

Ta có: u.v=|u|.|v|.cos(u,v)=|u|.|v|

cos(u,v)=1(u,v)=180o

Nói cách khác: u,v ngược hướng.

Bài 4.23 trang 70 Toán lớp 10: Trong mặt phẳng tọa độ Oxy, cho hai điểm A (1; 2), B(-4; 3). Gọi M (t; 0) là một điểm thuộc trục hoành.

a) Tính AM.BM theo t.

b) Tính t để AMB^=90o

Phương pháp giải:

+) Nếu vecto AM(x;y) và BM(a;b) thì AM.BM=xa+yb

+) AMB^=90oAMBM

Lời giải:

Bài 4.22 trang 70 Toán lớp 10 Tập 1 | Kết nối tri thức (ảnh 1) 

a) 

Ta có: A (1; 2), B(-4; 3) và M (t; 0)

AM=(t1;2),BM=(t+4;3)AM.BM=(t1)(t+4)+(2)(3)=t2+3t+2.

b)

Để AMB^=90o hay AMBM thì AM.BM=0

t2+3t+2=0[t=1t=2

Vậy t = -1 hoặc t = -2 thì AMB^=90o

Bài 4.24 trang 70 Toán lớp 10: Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A (-4; 1), B (2;4), C (2; -2)

a) Giải tam giác

b) Tìm tọa độ trực tâm H của tam giác ABC.

Phương pháp giải:

a) Độ dài vectơ AB(x;y) là |AB|=x2+y2

b) Chỉ ra AH.BC=0 và BH.CA=0 từ đó tìm tọa độ của H.

Lời giải:

a) Ta có:

{AB=(2(4);41)=(6;3)BC=(22;24)=(0;6)AC=(2(4);21)=(6;3){AB=|AB|=62+32=35BC=|BC|=02+(6)2=6AC=|CA|=62+(3)2=35.

Áp dụng định lí cosin cho tam giác ABC, ta có:

cosA^=b2+c2a22bc=(35)2+(35)2(6)22.35.35=35A^53,13o

cosB^=a2+c2b22ac=(6)2+(35)2(35)22.6.35=55B^63,435o

C^63,435o

Vậy tam giác ABC có: a=6;b=35;c=35A^53,13o;B^=C^63,435o.

b)

Gọi H có tọa độ (x; y)

{AH=(x(4);y1)=(x+4;y1)BH=(x2;y4)

Lại có: H là trực tâm tam giác ABC

AHBC và BHAC

(AH,BC)=90ocos(AH,BC)=0 và (BH,AC)=90ocos(BH,AC)=0

 

Do đó AH.BC=0 và BH.AC=0.

Mà:  BC=(0;6)

(x+4).0+(y1).(6)=06.(y1)=0y=1.

Và AC=(6;3)

(x2).6+(y4).(3)=06x12+(3).(3)=06x3=0x=12.

Vậy H có tọa độ (1;12)

Bài 4.25 trang 70 Toán lớp 10: Chứng minh rằng với mọi tam giác ABC, ta có:

SABC=12AB2.AC2(AB.AC)2.

Phương pháp giải:

Biến đổi vế trái, đưa về công thức SABC=12bc.sinA

+) AB.AC=AB.AC.cos(AB,AC)

+) sin2α=1cos2α với mọi α.

Lời giải:

Đặt A=12AB2.AC2(AB.AC)2

A=12AB2.AC2(AB.AC.cosA)2A=12AB2.AC2(1cos2A)

Mà 1cos2A=sin2A

A=12AB2.AC2.sin2A

A=12.AB.AC.sinA (Vì 0o<A^<180o nên sinA>0)

Do đó A=SABC hay SABC=12AB2.AC2(AB.AC)2. (đpcm)

Bài 4.26 trang 70 Toán lớp 10: Cho tam giác ABC có trọng tâm G. Chứng minh rằng với mọi điểm M, ta có:

MA2+MB2+MC2=3MG2+GA2+GB2+GC2

Phương pháp giải:

+) MA2=MA2

+) Với 3 điểm M, A, G bất kì ta có: MG+GA=MA

+) G là trọng tâm tam giác ABC thì: GA+GB+GC=0

Lời giải:

Ta có:

 MA2+MB2+MC2=MA2+MB2+MC2=(MG+GA)2+(MG+GB)2+(MG+GC)2=MG2+2MG.GA+GA2+MG2+2MG.GB+GB2+MG2+2MG.GC+GC2=3MG2+2MG.(GA+GB+GC)+GA2+GB2+GC2=3MG2+2MG.0+GA2+GB2+GC2

( do G là trọng tâm tam giác ABC)

=3MG2+GA2+GB2+GC2=3MG2+GA2+GB2+GC2 (đpcm)

Xem thêm lời giải Toán 10 Kết nối tri thức hay, chi tiết khác:

Giải Toán 10 trang 66 Tập 1 

Giải Toán 10 trang 67 Tập 1

Giải Toán 10 trang 68 Tập 1 

Giải Toán 10 trang 70 Tập 1 

Đánh giá

0

0 đánh giá