Giải toán 10 trang 124 Tập 1 Chân trời sáng tạo

606

Với Giải toán 10 trang 124 Tập 1 Chân trời sáng tạo chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Giải toán 10 trang 124 Tập 1 Chân trời sáng tạo

Vận dụng 2 trang 124 Toán lớp 10: Bảng dưới đây thống kê tổng số giờ nắng trong năm 2019 theo từng tháng được đo bởi hai trạm quan sát khí tượng đặt ở Tuyên Quang và Cà Mau.

Tháng

1

2

3

4

5

6

7

8

9

10

11

12

Tuyên Quang

25

89

72

117

106

177

156

203

227

146

117

145

Cà Mau

180

223

257

245

191

111

141

134

130

122

157

173

a) Hãy tính phương sai và độ lệch chuẩn của dữ liệu từng tỉnh.

b) Nêu nhận xét về sự thay đổi tổng số giờ nắng theo từng tháng ở mỗi tỉnh.

Phương pháp giải:

Cho mẫu số liệu x1,x2,...,xn.

Bước 1. Tính số trung bình x¯=x1+x2+...+xnn

Bước 2: +) Tính phương sai S2=1n[(x1x¯)2+(x2x¯)2+...+(xnx¯)2] hoặc S2=1n(x12+x22+...+xn2)x¯2

              +) Độ lệch chuẩn S=S2

Lời giải:

+) Tuyên Quang:

Số giờ nắng trung bình x¯=25+89+72+117+106+177+156+203+227+146+117+14512=131,67

Phương sai: S2=112(252+892+...+1452)131,6722921,2

Độ lệch chuẩn S=2921,254

+) Cà Mau:

Số giờ nắng trung bình x¯=180+223+257+245+191+111+141+134+130+122+157+17312=172

Phương sai: S2=112[(1802+2232+...+1732)1722]=2183

Độ lệch chuẩn S=2183=46,7

=> Nhận xét: Ở Tuyên Quang tổng số giờ nắng theo từng tháng thay đổi nhiều hơn so với ở Cà Mau.

Bài 1 trang 124 Toán lớp 10: Hãy chọn ngẫu nhiên trong lớp ra 5 bạn nam và 5 bạn nữ rồi đo chiều cao các bạn đó. So sánh xem chiều cao của các bạn nam hay các bạn nữ đồng đều hơn.

Phương pháp giải:

Từ mẫu số liệu so sánh hai giá trị: Khoảng biến thiên hoặc khoảng tứ phân vị.

+ Nếu trong mẫu không có số liệu nào quá lớn hay quá nhỏ => so sánh khoảng biến thiên

+ Nếu trong mẫu có 1 số liệu quá lớn hoặc quá nhỏ => so sánh khoảng tứ phân vị.

Lời giải:

Chiều cao 5 HS nam

170

164

172

168

176

Chiều cao 5 HS nữ

155

152

157

162

160

+) Khoảng biến thiên chiều cao của các học sinh nam là: 176 - 164 =12

+) Tứ phân vị: Q1,Q2,Q3

Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: 164,168,170,172,176

Bước 2: n=5, là số lẻ nên Q2=Me=170

Q1 là trung vị của nửa số liệu 164,168. Do đó Q1=12(164+168)=166

Q3 là trung vị của nửa số liệu 172,176. Do đó Q3=12(172+176)=174

Khoảng tứ phân vị ΔQ=174166=8

+) Khoảng biến thiên chiều cao của các học sinh nữ là: 162152=10

+) Tứ phân vị: Q1,Q2,Q3

Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: 152,155,157,160,162

Bước 2: n=5, là số lẻ nên Q2=Me=157

Q1 là trung vị của nửa số liệu 152,155. Do đó Q1=12(152+155)=153,5

Q3 là trung vị của nửa số liệu 160,162. Do đó Q3=12(160+162)=161

Khoảng tứ phân vị ΔQ=161153,5=7,5

Kết luận: So sánh khoảng biến thiên hay tứ phân vị thì theo mẫu số liệu trên, chiều cao của 5 bạn nữ là đồng đều hơn.

Bài 2 trang 124 Toán lớp 10: Hãy tìm độ lệch chuẩn, khoảng biến thiên, khoảng tứ phân vị và các giá trị ngoại lệ của các mẫu số liệu sau:

a) 6; 8; 3; 4; 5; 6; 7; 2; 4.

b) 13; 37; 64; 12; 26; 43; 29; 23.

Phương pháp giải:

Cho mẫu số liệu x1,x2,...,xn.

+) số trung bình x¯=x1+x2+...+xnn

+) phương sai S2=1n[(x1x¯)2+(x2x¯)2+...+(xnx¯)2] hoặc S2=1n(x12+x22+...+xn2)x¯2

  => Độ lệch chuẩn S=S2

Sắp xếp mẫu số liệu theo thứ tự không giảm: X1,X2,...,Xn

+) Khoảng biến thiên: R=XnX1

Tứ phân vị: Q1,Q2,Q3

Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: X1,X2,...,Xn

Bước 2: Q2=Me={Xk+1(n=2k+1)12(Xk+Xk+1)(n=2k)

Q1 là trung vị của nửa số liệu đã sắp xếp bên trái Q2 (không bao gồm Q2 nếu n lẻ)

Q3 là trung vị của nửa số liệu đã sắp xếp bên phải Q2 (không bao gồm Q2 nếu n lẻ)

+) Khoảng tứ phân vị: ΔQ=Q3Q1

+) x là giá trị ngoại lệ trong mẫu nếu x>Q3+1,5ΔQ hoặc x<Q11,5ΔQ

Lời giải:

a) Số trung bình: x¯=6+8+3+4+5+6+7+2+49=5.

Phương sai mẫu số liệu là:

S2=19(62 + 82 + 32 + 42 + 52 + 62 + 72 + 22 + 42) – 52 = .

Độ lệch chuẩn mẫu số liệu là: S=S2=103=303.

Sắp xếp các số liệu theo thứ tự không giảm, ta được:

2; 3; 4; 4; 5; 6; 6; 7; 8.

Khoảng biến thiên của mẫu là: R = 8 – 2 = 6.

Vì cỡ mẫu là 9 là số lẻ nên tứ phân vị thứ hai là Q2 = 5.

Tứ phân vị thứ nhất là trung vị của mẫu: 2; 3; 4; 4. Do đó Q1 = 3,5.

Tứ phân vị thứ ba là trung vị của mẫu: 6; 6; 7; 8. Do đó Q3 = 6,5.

Khoảng tứ phân vị của mẫu là: ∆Q = 6,5 – 3,5 = 3.

Ta có: Q3 + 1,5∆Q = 6,5 + 1,5 . 3 = 11 và Q1 – 1,5∆Q = 3,5 – 1,5 . 3 = – 1.

Do đó mẫu số liệu không có giá trị ngoại lệ.

b)

Số trung bình: x¯=13+37+64+12+26+43+29+238=30,875.

Phương sai mẫu số liệu là: S=S2=255,8616

S2=18(132 + 372 + 642 + 122 + 262 + 432 + 292 + 232) – (30,875)2 ≈ 255,86.

Độ lệch chuẩn mẫu số liệu là: .

Sắp xếp các số liệu theo thứ tự không giảm, ta được:

12; 13; 23; 26; 29; 37; 43; 64.

Khoảng biến thiên của mẫu là: R = 64 – 12 = 52.

Vì cỡ mẫu là 8 là số chẵn nên tứ phân vị thứ hai là Q2 = 1226+29=27,5.

Tứ phân vị thứ nhất là trung vị của mẫu: 12; 13; 23; 26. Do đó Q1 = 18.

Tứ phân vị thứ ba là trung vị của mẫu: 29; 37; 43; 64. Do đó Q3 = 40.

Khoảng tứ phân vị của mẫu là: ∆Q = 40 – 18 = 22.

Ta có: Q3 + 1,5∆Q = 40 + 1,5 . 22 = 73 và Q1 – 1,5∆Q = 18 – 1,5 . 22 = – 15.

Do đó mẫu số liệu không có giá trị ngoại lệ.

Xem thêm các bài giải Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Giải toán lớp 10 trang 120 Tập 1

Giải toán lớp 10 trang 121 Tập 1

Giải toán lớp 10 trang 122 Tập 1

Giải toán lớp 10 trang 125 Tập 1

Đánh giá

0

0 đánh giá