Vận dụng 2 trang 53 Toán 10 Tập 2 | Kết nối tri thức Giải Toán lớp 10

1 K

Với giải Vận dụng 2 trang 53 SGK Toán 10 Kết nối tri thức chi tiết trong Bài 22: Ba đường Conic giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SGK Toán 10. Mời các bạn đón xem:

Giải bài tập Toán lớp 10 Bài 22: Ba đường Conic

Vận dụng 2 trang 53 Toán 10 Tập 2: Tại một vùng biển giữa đất liền và một đảo, người ta phân định một đường ranh giới cách đều đất liền và đảo (H.7.28). Coi bờ biển vùng đất liền đó là một đường thẳng và đảo là hình tròn. Hỏi đường ranh giới nói trên có hình gì? Vì sao?

Giải Toán 10 Bài 22 (Kết nối tri thức): Ba đường Conic (ảnh 1) 

Lời giải:

Gọi d là đường bờ biển, kẻ một đường thẳng ∆ nằm trong đất liền song song với d sao cho khoảng cách giữa hai đường thẳng OA.

Giải Toán 10 Bài 22 (Kết nối tri thức): Ba đường Conic (ảnh 1) 

Khi đó ta có:

d(M; ∆) = MH + OA

Mà MH = MA nên d(M; ∆) = MH + OA = MA + OA = MO

Ta có khoảng cách từ điểm M bất kì thuộc đường ranh giới đến đường thẳng ∆ bằng với khoảng cách từ điểm M đến điểm O là tâm của hòn đảo.

Nếu ta coi ∆ là đường chuẩn, điểm O của hòn đảo là vị trí tiêu điểm F thì điểm M cách đều đường chuẩn ∆ và tiêu điểm F nên M nằm trên đường parabol.

Vậy đường ranh giới là tập hợp các điểm cách đều đất liền và đảo hay chính là đường parabol.

Đánh giá

0

0 đánh giá