Giải Toán 10 trang 75 Tập 2 Cánh diều

1 K

Với Giải Toán lớp 10 trang 75 Tập 2 Cánh diều tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Giải Toán 10 trang 75 Tập 2 Cánh diều

Luyện tập 1 trang 75 Toán lớp 10 Tập 2: Cho đường thẳng Δ có phương trình tham số

Cho đường thẳng denta có phương trình tham số

a) Chỉ ra tọa độ của hai điểm thuộc đường thẳng Δ.

b) Điểm nào trong các điểm C(– 1; – 1), D(1; 3) thuộc đường thẳng Δ.

Lời giải:

Cho đường thẳng denta có phương trình tham số

Điểm A(1; – 2) thuộc đường thẳng ∆.

+ Ứng với t = 1 ta có

Điểm B(– 1; – 1) thuộc đường thẳng ∆.

Chú ý: Ta chỉ cần lấy một số thực t bất kì thay vào phương trình tham số, ta sẽ được tọa độ 1 điểm thuộc đường thẳng ∆.

b) Theo câu a) điểm B(– 1; – 1) thuộc đường thẳng Δ ứng với t = 1, khi đó C ≡ B.

Vậy điểm C(– 1; – 1) thuộc đường thẳng ∆.

Thay tọa độ điểm D(1; 3) vào đường thẳng Δ ta được:

Cho đường thẳng denta có phương trình tham số

Vậy điểm D(1; 3) không thuộc đường thẳng ∆.

Hoạt động 3 trang 75 Toán lớp 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho đường thẳng ∆. Vẽ vectơ nn0 có giá vuông góc với đường thẳng ∆ (Hình 27).

Trong mặt phẳng tọa độ Oxy, cho đường thẳng denta

Lời giải:

Cách vẽ:

- vẽ 1 đoạn thẳng vuông góc với đường thẳng ∆.

- Vẽ hướng mũi tên trên đoạn thẳng đó, ta được vectơ chỉ phương thỏa mãn yêu cầu bài toán.

Hoạt động 4 trang 75 Toán lớp 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho đường thẳng ∆ đi qua điểm M0(x0; y0) và có vectơ pháp tuyến n=a;b. Xét điểm M(x; y) nằm trên ∆ (Hình 28)

Trong mặt phẳng tọa độ Oxy, cho đường thẳng ∆ đi qua điểm M0 và có vectơ pháp tuyến n

a) Nhận xét về phương của hai vectơ n và M0M.

b) Tìm mối liên hệ giữa tọa độ của điểm M với tọa độ của điểm M0 và tọa độ của vectơ pháp tuyến n.

Lời giải:

a) Vectơ n là vectơ pháp tuyến của đường thẳng ∆ nên giá của vectơ n vuông góc với đường thẳng ∆.

Đường thẳng ∆ đi qua điểm M0 và M, nên đường thẳng ∆ chính là đường thẳng MM0. Khi đó vectơ M0M có giá chính là đường thẳng ∆.

Do đó giá của vectơ n và giá của vectơ M0M vuông góc với nhau.

Vậy hai vectơ hai vectơ n và M0M không cùng phương.

b) Ta có: M0M=xx0;yy0,n=a;b.

Xét điểm M(x; y) thuộc ∆. Vì M0Mn nên

M0M.n=0a(x – x0) + b(y – y0) = 0  ax + by – ax0 – by0 = 0.

Xem thêm các bài giải Toán lớp 10 Cánh diều hay, chi tiết khác:

Giải Toán 10 trang 73 Tập 2

Giải Toán 10 trang 74 Tập 2

Giải Toán 10 trang 76 Tập 2

Giải Toán 10 trang 79 Tập 2

Giải Toán 10 trang 80 Tập 2

Đánh giá

0

0 đánh giá