Với Giải toán lớp 7 trang 111 Tập 2 Cánh diều tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:
Giải Toán 7 trang 111 Tập 2 Cánh diều
Luyện tập 3 trang 111 Toán 7 Tập 2: Cho tam giác ABC có I là giao điểm của ba đường phân giác. M, N, P lần lượt là hình chiếu của I trên các cạnh BC, CA, AB. Chứng minh rằng: IA, IB, IC lần lượt là đường trung trực của các đoạn thẳng NP, PM, MN.
Lời giải:
GT |
ABC, I là giao điểm của ba đường phân giác, M, N, P lần lượt là hình chiếu của I trên các cạnh BC, CA, AB |
KL |
IA, IB, IC lần lượt là đường trung trực của các đoạn thẳng NP, PM, MN. |
Chứng minh (Hình vẽ dưới đây):
Do M, N, P lần lượt là hình chiếu của I trên các cạnh BC, CA, AB (giả thiết)
Nên IM BC, IN AC, IP AB.
Vì I là giao điểm của ba đường phân giác (giả thiết)
Nên IM = IN = IP (tính chất giao điểm ba đường phân giác)
+) Chứng minh IA là đường trung trực của đoạn thẳng NP.
Vì IN = IP (chứng minh trên) nên I thuộc đường trung trực của NP (1)
Xét API (vuông tại P) và ANI (vuông tại N) có:
AI là cạnh chung,
IP = IN (chứng minh trên)
Do đó API = ANI (cạnh huyền - cạnh góc vuông).
Suy ra AP = AN (hai cạnh tương ứng).
Do đó A thuộc đường trung trực của NP (2)
Từ (1) và (2) suy ra IA là đường trung trực của NP.
+) Chứng minh IB là đường trung trực của PM.
Vì IP = IM (chứng minh trên) nên I thuộc đường trung trực của PM. (3)
Xét BMI (vuông tại M) và BPI (vuông tại P) có:
BI là cạnh chung,
IM = IP (chứng minh trên)
Do đó BMI = BPI (cạnh huyền - cạnh góc vuông).
Suy ra BM = BP (hai cạnh tương ứng).
Do đó B thuộc đường trung trực của PM. (4)
Từ (3) và (4) suy ra IB là đường trung trực của PM.
+) Chứng minh IC là đường trung trực của MN.
Vì IM = IN (chứng minh trên) nên I thuộc đường trung trực của MN. (5)
Xét CMI (vuông tại M) và CNI (vuông tại N) có:
CI là cạnh chung,
IM = IN (chứng minh trên).
Do đó CMI = CNI (cạnh huyền - cạnh góc vuông).
Suy ra CM = CN (hai cạnh tương ứng).
Do đó C thuộc đường trung trực của MN. (6)
Từ (5) và (6) suy ra IC là đường trung trực của MN.
B. Bài tập
Bài 1 trang 111 Toán 7 Tập 2: Tam giác ABC có ba đường phân giác cắt nhau tại I. Gọi M, N, P lần lượt là hình chiếu của I trên các cạnh BC, CA, AB.
a) Các tam giác IMN, INP, IPM có là tam giác cân không? Vì sao?
b) Các tam giác ANP, BPM, CMN có là tam giác cân không? Vì sao?
Lời giải:
GT |
ABC, I là giao điểm của ba đường phân giác, M, N, P lần lượt là hình chiếu của I trên các cạnh BC, CA, AB |
KL |
a) IMN, INP, IPM có là tam giác cân không? Vì sao? b) ANP, BPM, CMN có là tam giác cân không? Vì sao? |
Chứng minh (Hình vẽ dưới đây):
a) Do M, N, P lần lượt là hình chiếu của I trên các cạnh BC, CA, AB (giả thiết)
Nên IM BC, IN AC, IP AB.
Vì I là giao điểm của ba đường phân giác (giả thiết)
Nên IM = IN = IP (tính chất giao điểm ba đường phân giác)
Vì IM = IN nên IMN cân tại I.
Vì IN = IP nên INP cân tại I.
Vì IP = IM nên IPM cân tại I.
b) +) Xét API (vuông tại P) và ANI (vuông tại N) có:
AI là cạnh chung,
IP = IN (chứng minh trên)
Do đó API = ANI (cạnh huyền - cạnh góc vuông).
Suy ra AP = AN (hai cạnh tương ứng).
Tam giác ANP có AP = AN nên tam giác ANP cân tại A.
+) Xét BMI (vuông tại M) và BPI (vuông tại P) có:
BI là cạnh chung,
IM = IP (chứng minh trên)
Do đó BMI = BPI (cạnh huyền - cạnh góc vuông).
Suy ra BM = BP (hai cạnh tương ứng).
Tam giác BPM có BP = BM nên tam giác BPM cân tại B.
+) Xét CMI (vuông tại M) và CNI (vuông tại N) có:
CI là cạnh chung,
IM = IN (chứng minh trên).
Do đó CMI = CNI (cạnh huyền - cạnh góc vuông).
Suy ra CM = CN (hai cạnh tương ứng).
Tam giác CMN có CM = CN nên tam giác CMN cân tại C.
Bài 2 trang 111 Toán 7 Tập 2: Tam giác ABC có ba đường phân giác cắt nhau tại I. Chứng minh:
a) ;
b) .
Lời giải:
GT |
ABC, I là giao điểm của ba đường phân giác |
KL |
a) ; b) . |
Chứng minh (Hình vẽ dưới đây):
a) Vì AI là đường phân giác của nên (tính chất tia phân giác của một góc)
Vì BI là đường phân giác của nên (tính chất tia phân giác của một góc)
Vì CI là đường phân giác của nên (tính chất tia phân giác của một góc)
Suy ra
Xét tam giác ABC ta có (tổng ba góc của một tam giác)
Do đó .
Vậy
b) Vì CI là đường phân giác của nên .
Suy ra .
Do đó .
Xét tam giác BIC có: (tổng ba góc của một tam giác)
Do đó .
Vậy
Bài 3 trang 111 Toán 7 Tập 2: Tam giác ABC có ba đường phân giác cắt nhau tại I và AB < AC.
a) Chứng minh ;
b) So sánh IB và IC.
Lời giải:
GT |
ABC, AB < AC, I là giao điểm của ba đường phân giác |
KL |
a) b) So sánh IB và IC. |
Chứng minh (Hình vẽ dưới đây):
a) Vì BI là đường phân giác của nên .
Vì CI là đường phân giác của nên .
Tam giác ABC có AB < AC nên (quan hệ giữa góc và cạnh đối diện trong một tam giác)
Do đó .
Suy ra .
Vậy
b) Vì (chứng minh câu a), mà nên .
Tam giác BIC có nên IB < IC (quan hệ giữa cạnh và góc đối diện trong một tam giác)
Vậy IB < IC.
Xem thêm các bài giải Toán lớp 7 Cánh diều hay, chi tiết khác: