Cho tam giác ABC vuông cân tại A. Tia phân giác của góc B cắt AC tại N, tia phân giác của góc C

2.1 K

Với giải Bài 6 trang 50 SBT Toán lớp 7 Chân trời sáng tạo chi tiết trong Bài 3: Tam giác cân giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Toán lớp 7 Bài 3: Tam giác cân

Bài 6 trang 50 SBT Toán 7 Tập 2: Cho tam giác ABC vuông cân tại A. Tia phân giác của góc B cắt AC tại N, tia phân giác của góc C cắt AB tại M. Gọi O là giao điểm của BN và CM.

Cho tam giác ABC vuông cân tại A Tia phân giác của góc B cắt AC tại N

a) Tính số đo các góc OBC, OCB.

b) Chứng minh rằng tam giác OBC cân.

c) Tính số đo góc BOC.

Lời giải:

Cho tam giác ABC vuông cân tại A Tia phân giác của góc B cắt AC tại N

a) Vì ∆ABC vuông cân tại A (giả thiết)

Nên ABC^=ACB^=45°

Vì BN là tia phân giác của ABC^ (giả thiết)

Nên

ABN^=NBC^=12ABC^=45°2=22,5°

Hay OBC^=22,5°

Vì CM là tia phân giác của ACB^ (giả thiết)

Nên

ACM^=MCB^=12ACB^=45°2=22,5°

Hay OCB^=22,5°

Vậy OBC^=22,5°;OCB^=22,5°.

b) Xét ∆OBC có OBC^=OCB^ (cùng bằng 22,5°).

Nên tam giác OBC cân tại O.

Vậy tam giác OBC cân tại O.

c) Xét ∆OBC có: OBC^+OCB^+BOC^=180° (tổng ba góc trong một tam giác).

Nên BOC^=180°OBC^OCB^

Suy ra BOC^=180°22,5°22,5°=135°

Vậy BOC^=135°.

Đánh giá

0

0 đánh giá