Thực hành 3 trang 84 Toán 10 Tập 2 | Chân trời sáng tạo Giải Toán lớp 10

1.6 K

Với giải Thực hành 3 trang 84 Toán lớp 10 Chân trời sáng tạo chi tiết trong Bài 2: Xác suất của biến cố giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Giải bài tập Toán lớp 10 Bài 2: Xác suất của biến cố

Thực hành 3 trang 84 Toán lớp 10 Tập 2: Gieo đồng thời ba con xúc xắc cân đối và đồng chất. Tính xác suất của các biến cố:

a) “Tích các số chấm ở mặt xuất hiện trên ba con xúc xắc chia hết cho 3”.

b) “Tổng các số chấm ở mặt xuất hiện trên ba con xúc xắc lớn hơn 4”.

Lời giải:

Không gian mẫu là: n(Ω) = 6.6.6 = 216.

a) Gọi A là biến cố: “Tích các số chấm ở mặt xuất hiện trên ba con xúc xắc chia hết cho 3”.

Khi đó A¯ là biến cố: “Tích các số chấm ở mặt xuất hiện trên ba con xúc xắc không chia hết cho 3”.

Nghĩa là số chấm xuất hiện trên ba con xúc xắc không có số nào chia hết cho 3. Do đó số chấm của 3 con xúc xắc chỉ có thể chọn trong tập {1; 2; 4; 5}. Khi đó ta có:

4.4.4 = 43 = 64 kết quả.

⇒ n(A¯) = 64.

⇒ P(A¯) = nA¯nΩ=64216=827

⇒ P(A) = 1 – P(A¯) = 1827=1927.

Vậy xác suất để “Tích các số chấm ở mặt xuất hiện trên ba con xúc xắc chia hết cho 3” là 1927.

b) Gọi B là biến cố “Tổng các số chấm ở mặt xuất hiện trên ba con xúc xắc lớn hơn 4”.

Khi đó B¯ là biến cố: “Tổng các số chấm ở mặt xuất hiện trên ba con xúc xắc nhỏ hơn hoặc bằng 4”.

Các kết quả thuận lợi cho biến cố B¯ là: {(1; 1; 1); (1; 1; 2); (1; 2; 1); (2; 1; 1)}.

⇒ n(B¯) = 4.

⇒ P(B¯) = nB¯nΩ=4216=154.

⇒ P(B) = 1 – P(B¯) = 1154=5354.

Vậy xác suất để “Tổng các số chấm ở mặt xuất hiện trên ba con xúc xắc lớn hơn 4” là 5354.

Đánh giá

0

0 đánh giá