Với giải Luyện tập 2 trang 89 SGK Toán lớp 10 Cánh diều chi tiết trong Bài 5: Phương trình đường tròn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SGK Toán 10. Mời các bạn đón xem:
Giải bài tập Toán lớp 10 Bài 5: Phương trình đường tròn
Luyện tập 2 trang 89 Toán lớp 10 Tập 2: Tìm k sao cho phương trình: x2 + y2 + 2kx + 4y + 6k – 1 = 0 là phương trình đường tròn.
Lời giải:
Ta có: x2 + y2 + 2kx + 4y + 6k – 1 = 0
⇔ (x2 + 2kx + k2) + (y2 + 4y + 4) – k2 + 6k – 1 – 4 = 0
⇔ (x + k)2 + (y + 2)2 = k2 – 6k + 5
Do đó, phương trình trên là phương trình đường tròn khi và chỉ khi k2 – 6k + 5 > 0.
Giải phương trình k2 – 6k + 5 > 0.
Tam thức bậc hai k2 – 6k + 5 có ∆' = (– 3)2 – 1 . 5 = 4 > 0 nên tam thức có hai nghiệm phân biệt k1 = 1, k2 = 5. Do hệ số a > 0 nên tam thức cùng dấu với a khi k ∈ (– ; 1) ∪ (5; + ). Vậy k2 – 6k + 5 > 0 khi k ∈ (– ; 1) ∪ (5; + ).
Vậy phương trình đã cho là phương trình đường tròn khi k ∈ (– ; 1) ∪ (5; + ).
Xem thêm lời giải bài tập SGK Toán 10 Cánh diều hay, chi tiết khác:
Hoạt động 1 trang 87 Toán lớp 10 Tập 2:...
Hoạt động 3 trang 88 Toán lớp 10 Tập 2: Viết phương trình đường tròn (C):...
Bài 1 trang 91 Toán lớp 10 Tập 2: Phương trình nào sau đây là phương trình đường tròn?...
Bài 2 trang 91 Toán lớp 10 Tập 2: Tìm tâm và bán kính của đường tròn trong mỗi trường hợp sau:...
Bài 3 trang 91 Toán lớp 10 Tập 2: Lập phương trình đường tròn trong mỗi trường hợp sau...
Xem thêm các bài giải SGK Toán 10 Cánh diều hay, chi tiết khác:
Giải SGK Toán 10 Bài 3: Phương trình đường thẳng
Giải SGK Toán 10 Bài 5: Phương trình đường tròn