Giải SBT Toán 10 trang 23 Tập 2 Chân trời sáng tạo

1.3 K

Với lời giải SBT Toán 10 trang 23 Tập 2 chi tiết trong Bài tập cuối chương 7 sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:

Giải SBT Toán lớp 10 Bài tập cuối chương 7

Bài 9 trang 23 SBT Toán 10 Tập 2: Một người phát cầu qua lưới từ độ cao y0 mét, nghiêng một góc α so với phương ngang với vận tốc đầu v0.

Phương trình chuyển động của quả cầu là:

y=g2v02cos2αx2+tanαx+y0 với g = 10 m/s2

Viết phương trình chuyển động của quả cầu nếu α=450,y0=0,3m và v0 = 7,67 m/s.

b) Để cầu qua được lưới bóng cao 1,5 m thì người phát cầu phải đứng cách lưới bao xa?

Lưu ý: Đáp số làm tròn đến hàng phần trăm.

Lời giải:

a) Ta có

y=g2v02cos2αx2+tanαx+y0

Thay α=450,y0=0,3 và v0 = 7,67 vào phương trình trên ta được:

y = 102.7,672.cos245° + tan45°.x + 0,3 hay y = –0,17x2 + x + 0,3.

b) Với x là khoảng cách từ người phát cầu đến lưới thì cầu phát được qua lưới khi và chỉ khi y ( x ) > 1,5 hay –0,17x2 + x + 0,3 > 1,5 hay –0,17x2 + x – 1,2 > 0.

Xét tam thức bậc hai f(x) = – 0,17x2 + x – 1,2 có  = 12 – 4.(– 0,17).(– 1,2) = 0,184 > 0 nên f(x) có hai nghiệm phân biệt x1  4,20 và x2  1,68.

Ta có a = – 0,17 < 0 suy ra f(x) > 0 khi 1,68 < x < 4,20.

Vậy người phát cầu cần đứng cách lưới trong khoảng từ 1,68 m đến 4,20 m.

Bài 10 trang 23 SBT Toán 10 Tập 2: Cho tam giác ABC và ABD cùng vuông tại A như Hình 3 có AB = x, BC = 5 và BD = 6.

Sách bài tập Toán 10 Bài tập cuối chương 7 - Chân trời sáng tạo (ảnh 1)

a) Biểu diễn độ dài cạnh AC và AD theo x.

b) Tìm x để chu vi của tam giác ABC là 12.

c) Tìm x để AD = 2AC

Lời giải:

a) Vì x là khoảng cách AB nên x > 0

Áp dụng định lí Phytagoras cho tam giác ABC:

AB2 + AC2 = BC2

 AC2 = 52 – x2

Như vậy AC = 25x2

Áp dụng định lí Phytagoras cho tam giác ABD:

AB2 + AD2 = BD2

 AD2 = 62 – x2

Như vậy AD = 36x2

b) Giải phương trình AB + AC + BC = 12

 x + 5 + 25x2 = 12

 25x2 = 7 – x

 25 – x2 = (7 – x)2

 2x– 14x + 24 = 0

 x = 4 hoặc x = 3

Thay lần lượt các giá trị trên vào phương trình AB + AC + BC = 12 ta thấy x = 4 và  x = 3 đều thoả mãn. Vậy x = 4 hoặc x = 3 để chu vi tam giác ABC là 12.

c) Ta có AD = 2AC

 36x2 = 225x2

 36 – x2 = 100 – 4x2

 3x –  64 = 0

 x = 833 hoặc x = -833 mà x > 0 nên x = 833.

Thay x = 833 vào phương trình AD = 2AC thấy thỏa mãn. Vậy x = 833.

Xem thêm các bài giải sách bài tập Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các bài giải SBT Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Phương trình quy về phương trình bậc hai

Bài tập cuối chương 7

Bài 1: Quy tắc cộng và quy tắc nhân

Bài 2: Hoán vị, chỉnh hợp và tổ hợp

Bài 3: Nhị thức Newton

Đánh giá

0

0 đánh giá