Lý thuyết Đường tiệm cận của đồ thị hàm số (Cánh diều 2024) | Lý thuyết Toán 12

577

Với tóm tắt lý thuyết Toán lớp 12 Bài 3: Đường tiệm cận của đồ thị hàm số sách Cánh diều hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 12.

Lý thuyết Toán 12 Bài 3: Đường tiệm cận của đồ thị hàm số

A. Lý thuyết Đường tiệm cận của đồ thị hàm số

1. Đường tiệm cận ngang

Đường thẳng y=y0 gọi là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu limx+f(x)=y0 hoặc limxf(x)=y0

Ví dụ: Tìm TCN của đồ thị hàm số y=f(x)=3x2x+1

Ta có: limx+3x2x+1=limx3x2x+1=3

Vậy đồ thị hàm số f(x) có TCN là y = 3.

2. Đường tiệm cận đứng

Đường thẳng x=x0 gọi là đường tiệm cận đứng (gọi tắt là tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:limxx0+f(x)=+;limxx0+f(x)=;limxx0f(x)=+;limxx0f(x)=;

Ví dụ: Tìm TCĐ của đồ thị hàm số y=f(x)=3xx+2

Ta có: limx2+3x2x+2=+

Vậy đồ thị hàm số có TCĐ là x = -2

3. Đường tiệm cận xiên

Đường thẳng y=ax+b(a0) gọi là đường tiệm cận xiên (gọi tắt là tiệm cận xiên) của đồ thị hàm số y = f(x) nếu

limx+f(x)=[f(x)(ax+b)]=0 hoặc limxf(x)=[f(x)(ax+b)]=0

Ví dụ: Tìm TCX của đồ thị hàm số y=f(x)=x+1x+2

Ta có: limx+[f(x)x]=limx+1x+2=0

Vậy đồ thị hàm số có TCX là y = x

B. Bài tập Đường tiệm cận của đồ thị hàm số

Bài 1. Tiệm cận ngang của đồ thị hàm số y=3x1x+2 

A. x = 3.

B. y = 3.

C. x = – 2.

D. y = – 2.

Hướng dẫn giải

Đáp án đúng là: B

Hàm số đã cho có tập xác định là ℝ \ {– 2}.

Ta có: limx+y=limx+3x1x+2=3;

limxy=limx3x1x+2=3

Vậy đường thẳng y = 3 là tiệm cận ngang của đồ thị hàm số đã cho.

Bài 2. Tiệm cận xiên của đồ thị hàm số y=x31x1 

A. y = x – 1.

B. y = x + 3.

C. y = x – 3.

D. y = x.

Hướng dẫn giải

Đáp án đúng là: C

Do limx+yx3=limx+1x1=0 nên đường thẳng y = x – 3 là tiệm cận xiên của đồ thị hàm số đã cho.

Bài 3. Tìm tiệm cận đứng, tiệm cận ngang, tiệm cận xiên (nếu có) của mỗi đồ thị hàm số sau:

a) y=7xx+1;

b) y=x23x+2x+1;

c) y = 2x – 1 + 2x2.

Hướng dẫn giải

a) y=7xx+1

Hàm số đã cho có tập xác định là ℝ \ {– 1}.

Ta có limx+y=limx+7xx+1=1;limxy=limx7xx+1=1

Do đó, đường thẳng y = – 1 là tiệm cận ngang của đồ thị hàm số đã cho.

Lại có limx1+y=limx1+7xx+1=+;limx1y=limx17xx+1=

Do đó, đường thẳng x = – 1 là tiệm cận đứng của đồ thị hàm số đã cho.

Đồ thị hàm số đã cho không có tiệm cận xiên.

b) y=x23x+2x+1

Hàm số đã cho có tập xác định là ℝ \ {– 1}.

Ta có limx+y=limx+x23x+2x+1=+;limxy=limxx23x+2x+1=

Do đó, đồ thị hàm số đã cho không có tiệm cận ngang.

Lại có limx1+y=limx1+x23x+2x+1=+;limx1y=limx1+x23x+2x+1=

Do đó, đường thẳng x = – 1 là tiệm cận đứng của đồ thị hàm số đã cho.

Ta có y=x23x+2x+1=x4+6x+1

limx+yx4=limx+6x+1=0 ;limxyx4=limx6x+1=0

Do đó, đường thẳng y = x – 4 là tiệm cận xiên của đồ thị hàm số đã cho.

c) y = 2x – 1 + 2x2

Hàm số đã cho có tập xác định là ℝ \ {0}.

Đồ thị hàm số đã cho không có tiệm cận ngang.

Ta có limx0+y=limx0+2x1+2x2=+;limx0y=limx02x1+2x2=

Do đó, đường thẳng x = 0 là tiệm cận đứng của đồ thị hàm số đã cho.

Lại có limx+y2x1=limx+2x2=0;  limxy2x1=limx2x2=0

Do đó, đường thẳng y = 2x – 1 là tiệm cận xiên của đồ thị hàm số đã cho.

Bài 4. Nếu trong một ngày, một xưởng sản xuất được x sản phẩm thì chi phí trung bình (tính bằng nghìn đồng) cho một sản phẩm được cho bởi công thức:

Cx=50x+3000x

a) Tìm các đường tiệm cận của đồ thị hàm số y = C(x).

b) Nêu nhận xét về chi phí của một sản phẩm khi số sản phẩm được sản xuất trong một ngày x đủ lớn.

Hướng dẫn giải

a) Xét hàm số y = Cx=50x+3000x với x ∈ (0; + ∞).

Ta có: limx+Cx=limx+50x+3000x=50. Do đó, đường thẳng y = 50 là tiệm cận ngang của đồ thị hàm số y = C(x).

Lại có limx0+Cx=limx0+50x+3000x=+. Do đó, đường thẳng x = 0 là tiệm cận đứng của đồ thị hàm số y = C(x).

b) Khi x → + ∞, ta có C(x) → 50, điều đó có nghĩa là khi x đủ lớn thì chi phí sản xuất một sản phẩm sẽ gần bằng 50 nghìn đồng.

Xem thêm các bài tóm tắt lý thuyết Toán lớp 12 Cánh diều hay, chi tiết khác:

Đánh giá

0

0 đánh giá