Lý thuyết Vectơ và các phép toán trong không gian (Chân trời sáng tạo 2024) | Lý thuyết Toán 12

0.9 K

Với tóm tắt lý thuyết Toán lớp 12 Bài 1: Vectơ và các phép toán trong không gian sách Chân trời sáng tạo hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 12.

Lý thuyết Toán 12 Bài 1: Vectơ và các phép toán trong không gian

A. Lý thuyết Vectơ và các phép toán trong không gian

1. Vecto trong không gian

  • Vecto trong không gian là một đoạn thẳng có hướng
  • Các khái niệm có liên quan đến vecto trong không gian như: giá của vecto, độ dài của vecto, vecto cùng phương, vecto cùng hướng, vecto-không, hai vecto bằng nhau, hai vecto đối nhau, … được phát biểu tương tự như trong mặt phẳng

2. Tổng và hiệu của hai vecto

a) Tổng của hai vecto

Trong không gian, cho hai vecto a và b. Lấy một điểm A bất kì và các điểm B,C sao cho AB=a,BC=b. Khi đó, vecto AC được gọi là tổng của hai vecto a và b, kí hiệu là a+b

Phép lấy tổng của hai vecto được gọi là phép cộng vecto

  • Với 3 điểm A, B, C trong không gian, ta có: AB+BC=AC (Quy tắc 3 điểm)
  • Nếu ABCD là hình bình hành thì AB+AD=AC (Quy tắc hình bình hành)
  • Nếu ABCD.A’B’C’D’ là hình hộp thì AB+AD+AA=AC(Quy tắc hình hộp)

b) Hiệu của hai vecto

Trong không gian, cho hai vecto a và b.  Hiệu của hai vecto a và b là tổng của hai vecto a và vecto đối của b, kí hiệu là ab

Phép lấy hiệu của hai vecto được gọi là phép trừ vecto

Với ba điểm O, A, B trong không gian, ta có: OAOB=BA (Quy tắc hiệu)

3. Tích của một số với một vecto

Trong không gian, tích của một số thực k0 với một vecto a0 là một vecto, kí hiệu là ka, được xác định như sau:

- Cùng hướng với vecto a nếu k > 0; ngược hướng với vecto a nếu k < 0

- Có độ dài bằng |k|.|a|

Phép lấy tích của một số với một vecto được gọi là phép nhân một số với một vecto

4. Tích vô hướng của hai vecto

a) Góc giữa hai vecto trong không gian

Trong không gian, cho hai vecto a và b khác 0. Lấy một điểm O bất kỳ và gọi A, B là hai điểm sao cho OA=a,OB=b. Khi đó, góc AOB^(0AOB^180) được gọi là góc giữa hai vecto a và b, kí hiệu (a,b)

b) Tích vô hướng của hai vecto

Trong không gian, cho hai vecto a và b khác 0. Tích vô hướng của hai vecto a và b là một số, kí hiệu là ab, được xác định bởi công thức ab=|a||b|cos(a,b)

Sơ đồ tư duy Vectơ và các phép toán trong không gian

B. Bài tập Vectơ và các phép toán trong không gian

Bài 1. Cho hình lăng trụ ABC.A'B'C'. Đặt AB=a,AA'=b,AC=c. Khẳng định nào sau đây đúng?

A. B'C=ab+c.

B. B'C=a+bc.

C. B'C=a+b+c .

D. B'C=a+bc.

Hướng dẫn giải

Đáp án đúng là: A

Vectơ và các phép toán trong không gian (Lý thuyết Toán lớp 12) | Chân trời sáng tạo

Ta có B'C=BCBB'=ACABBB'=cab.

Bài 2. Cho hình lập phương . Mệnh đề nào sau đây sai?

A. AB+AD+AA'=AC'.     

B. AC=AB+AD.

C. AB=CD.                      

D. AB=CD.

Hướng dẫn giải

Đáp án đúng là: D

Vectơ và các phép toán trong không gian (Lý thuyết Toán lớp 12) | Chân trời sáng tạo

Mệnh đề sai là: AB=CD, AB và CD là hai vectơ đối nhau.

Bài 3. Cho tứ diện đều ABCD có cạnh bằng a. Chứng minh rằng

a) AB+CD+BC+DA=0.

b) AB.AC=a22.

c) AB.CD=0.

Hướng dẫn giải

Vectơ và các phép toán trong không gian (Lý thuyết Toán lớp 12) | Chân trời sáng tạo

Gọi M là trung điểm của BC và O là trọng tâm của tam giác BCD.

a) Ta có AB+CD+BC+DA=AB+BC+CD+DA=AC+CA=0 .

b) Vì DABC đều nên AB,AC=60°.

 AB.AC=AB.AC.cosAB,AC=a.a.cos60°=a22.

c) Vì ABCD là tứ diện đều, O là trọng tâm của tam giác BCD nên AOBCD.

Suy ra AOCD.

Lại có BO  CD. Do đó CD  (ABO). Suy ra CD  AB hay AB.CD=0.

Bài 4. Cho hình chóp S.ABC có SA = SB = SC = AC = AB = a và BC=a2. Tính góc SC,AB.

Hướng dẫn giải

Vectơ và các phép toán trong không gian (Lý thuyết Toán lớp 12) | Chân trời sáng tạo

Từ giả thiết ta có DABC vuông tại A  nên AB.AC=0>và SA,AB=120°.

Ta có cosSC,AB=SC.ABSC.AB=SA+AC.ABSC.AB=SA.AB+AC.ABSC.AB=SA.ABSC.AB=SA.AB.cosSA,ABSC.AB=a.a.cos120°a.a.

Suy ra SC,AB=120°.

Bài 5. Theo định luật II Newton: gia tốc của một vật có cùng hướng với lực tác dụng lên vật. Độ lớn của gia tốc tỉ lệ thuận với độ lớn của lực và tỉ lệ nghịch với khối lượng của vật: F=ma, trong đó a  là vectơ gia tốc (m/s2), F  có vectơ lực (N) tác dụng lên vật, m (kg) là khối lượng của vật. Một cầu thủ sút một quả bóng có khối lượng 0,6 kg với gia tốc 60 m/s2 thì cần một lực đá có độ lớn là bao nhiêu?

Hướng dẫn giải

Ta có F=ma=0,6.60=36N .

Vậy một lực có độ lớn là 36 N.

Xem thêm các bài tóm tắt lý thuyết Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Đánh giá

0

0 đánh giá