Với tóm tắt lý thuyết Toán lớp 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản sách Chân trời sáng tạo hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 12.
Lý thuyết Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản
A. Lý thuyết Khảo sát và vẽ đồ thị một số hàm số cơ bản
1. Sơ đồ khảo sát hàm số
Các bước khảo sát hàm số
1. Tìm tập xác định của hàm số 2. Xét sự biến thiên của hàm số
3. Vẽ đồ thị của hàm số
|
2. Khảo sát hàm số
Ví dụ: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
1. Tập xác định của hàm số: R
2. Sự biến thiên:
3. Đồ thị:
3. Khảo sát hàm số
Ví dụ: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
1. Tập xác định của hàm số: R\{2}
2. Sự biến thiên:
Do đó, đồ thị của hàm số có tiệm cận đứng là x = 2, tiệm cận ngang là y = 1
3. Đồ thị:
4. Khảo sát hàm số (đa thức tử không chia hết cho đa thức mẫu)
Ví dụ: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
1. Tập xác định của hàm số: R\{2}
2. Sự biến thiên: Viết
;
Do đó, đồ thị của hàm số có tiệm cận đứng là x = 2, tiệm cận xiên là y = x+1
3. Đồ thị:
5. Vận dụng đạo hàm và khảo sát hàm số để giải quyết một số vấn đề liên quan đến thực tiễn
Ví dụ: Số dân của một thị trấn sau t năm kể từ năm 1970 được ước tính bởi công thức (f(t) được tính bằng nghìn người)
a) Tính số dân của thị trấn vào năm 2022
b) Xem y = f(t) là một hàm số xác định trên nửa khoảng . Khảo sát sự biến thiên và vẽ đồ thị của hàm số f(t)
c) Đạo hàm của hàm số y = f(t) biểu thị tốc độ tăng dân số của thị trấn (tính bằng nghìn người/năm)
Giải:
a) Ta có: (nghìn người)
Vậy số dân của thị trấn vào năm 2022 khoảng 23895 nghìn người
b)
1) Sự biến thiên
. Do đó, đường thẳng y = 26 là tiệm cận ngang của đồ thị hàm số.
với mọi
Hàm số đồng biến trên nửa khoảng .
Hàm số không có cực trị
2) Đồ thị
c)
(do )
Vậy vào năm 1990, tốc độ tăng dân số là 0,192 nghìn người/năm.
Sơ đồ tư duy Khảo sát và vẽ đồ thị một số hàm số cơ bản
B. Bài tập Khảo sát và vẽ đồ thị một số hàm số cơ bản
Bài 1. Hàm số nào dưới đây có bảng biến thiên như sau:
A.
B.
C.
D.
Hướng dẫn giải
Đáp án đúng là: D
Dựa vào bảng biến thiên ta thấy:
+) x = 5 là tiệm cận đứng và y = 1 là tiệm cận ngang của đồ thị hàm số. Do đó loại B và C.
+) Hàm số nghịch biến trên (−∞; 5) và (5; +∞).
Xét đáp án A. Có nên loại đáp án A.
Xét đáp án D. Có . Do đó chọn đáp án D.
Bài 2. Đồ thị của hàm số y = −x3 + 3x2 – 1 là hình nào dưới đây
A. Hình 1.
B. Hình 2.
C. Hình 3.
D. Hình 4.
Hướng dẫn giải
Đáp án đúng là: B
Vì đồ thị hàm số y = −x3 + 3x2 – 1 cắt trục tung tại (0; −1). Do đó chọn B.
Bài 3. Khảo sát và vẽ đồ thị của hàm số
a) y = −x3 – x;
b)
Hướng dẫn giải
a) y = −x3 – x
1. Tập xác định: D = ℝ.
2. Sự biến thiên
• Chiều biến thiên
Có y’ = −3x2 – 1 < 0, ∀x ∈ ℝ.
Do đó hàm số luôn nghịch biến.
Hàm số đã cho không có cực trị.
• Các giới hạn tại vô cực
;
• Bảng biến thiên
3. Đồ thị
Đồ thị hàm số đi qua gốc tọa độ và điểm (1; −2).
Đồ thị hàm số nhận (0; 0) làm tâm đối xứng.
b)
1. Tập xác định: D = ℝ\{1}.
2. Sự biến thiên
• Chiều biến thiên
Có
Hàm số nghịch biến trên các khoảng (−∞; 1) và (1; +∞).
Hàm số không có cực trị
• Tiệm cận
Có
Do đó x = 1 là tiệm cận đứng của đồ thị hàm số.
Có ;
Do đó y = −1 là tiệm cận ngang của đồ thị hàm số.
• Bảng biến thiên
3. Đồ thị
Đồ thị hàm số giao với Ox tại (3; 0) và giao với Oy tại (0; −3).
Tâm đối xứng của đồ thị là (1; −1).
Các trục đối xứng của đồ thị là hai đường phân giác của các góc tạo bởi hai đường tiệm cận x = 1 và y = −1.
Bài 4. Khảo sát và vẽ đồ thị của hàm số
Hướng dẫn giải
1. Tập xác định: D = ℝ\{2}.
2. Sự biến thiên
• Chiều biến thiên
Có
y' = 0 2x2 – 8x = 0 x = 0 hoặc x = 4.
Trên các khoảng (−∞; 0) và (4; +∞), có y' > 0 nên hàm số đồng biến trên mỗi khoảng đó.
Trên các khoảng (0; 2) và (2; 4), có y' < 0 nên hàm số nghịch biến trên mỗi khoảng đó.
• Cực trị
Hàm số đạt cực đại tại x = 0 và yCĐ = −4.
Hàm số đạt cực tiểu tại x = 4 và yCT = 12.
Có
Do đó x = 2 là tiệm cận đứng của đồ thị hàm số.
Có
Tương tự
Do đó y = 2x là tiệm cận xiên của đồ thị hàm số.
• Bảng biến thiên
3. Đồ thị
Đồ thị hàm số giao với Oy tại (0; −4).
Tâm đối xứng của đồ thị hàm số là (2; 4).
Các trục đối xứng của đồ thị hàm số là hai đường phân giác của các góc tạo bởi hai đường tiệm cận x = 2 và y = 2x.
Bài 5.Một tên lửa bay vào không trung với quãng đường đi được s(t) (km) là hàm phụ thuộc theo biến t (giây) theo quy tắc sau: (km). Hỏi vận tốc của tên lửa sau 1 giây là bao nhiêu (biết hàm biểu thị vận tốc là đạo hàm của hàm biểu thị quãng đường theo thời gian).
Hướng dẫn giải
Ta có
Vận tốc của tên lửa sau 1 giây là: (km/s).
Xem thêm các bài tóm tắt lý thuyết Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác: