Lý thuyết Giá trị lớn nhất, giá trị nhỏ nhất của hàm số (Chân trời sáng tạo 2024) | Lý thuyết Toán 12

25

Với tóm tắt lý thuyết Toán lớp 12 Bài 2: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số sách Chân trời sáng tạo hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 12.

Lý thuyết Toán 12 Bài 2: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số

A. Lý thuyết Giá trị lớn nhất, giá trị nhỏ nhất của hàm số

1. Định nghĩa Khái niệm GTLN, GTNN của hàm số

Cho hàm số y = f(x) xác định trên tập D.

  • Số M là giá trị lớn nhất của hàm số y = f(x) trên tập D nếu f(x)  M với mọi xD và tồn tại x0D sao cho f(x0) = M.

Kí hiệu M = maxxDf(x) hoặc M = maxDf(x)

  • Số m là giá trị nhỏ nhất của hàm số y = f(x) trên tập D nếu f(x)  m với mọi xD và tồn tại x0D sao cho f(x0) = m.
Kí hiệu m = minxDf(x) hoặc m = minDf(x)

2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một đoạn

Các bước tìm GTLN và GTNN của hàm số f(x) trên đoạn [a;b]:

  1. Tìm các điểm x1,x2,...,xn(a;b), tại đó f’(x) = 0 hoặc không tồn tại
  2. Tính f(x1),f(x2),...,f(xn),f(a) và f(b)
  3. Tìm số lớn nhất M và số nhỏ nhất m trong các số trên. Ta có:
M = max[a;b]f(x); m = min[a;b]f(x)

Ví dụ: Tìm GTLN và GTNN của hàm số y=x44x2+3 trên đoạn [0;4]

Ta có: y=4x38x=4x(x22);y=0x=0 hoặc x=2 (vì x[0;4])

y(0) = 3; y(4) = 195; y(2) = -1

Do đó: max[0;4]y=y(4)=195min[0;4]y=y(2)=1

Sơ đồ tư duy Giá trị lớn nhất, giá trị nhỏ nhất của hàm số
B. Bài tập Giá trị lớn nhất, giá trị nhỏ nhất của hàm số

 

Bài 1. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = f(x) = x3 – 3x2 + 3 trên đoạn [1; 3]. Giá trị M + m bằng

A. 8.

B. 2.

C. 4.

D. 6.

Hướng dẫn giải

Đáp án đúng là: B

Trên đoạn [1; 3], có y' = 3x2 – 6x; y' = 0  x = 0 (loại) hoặc x = 2 (nhận).

Có f(1) = 1; f(2) = −1; f(3) = 3.

Do đó M=max1;3fx=3;m=min1;3fx=1

Vậy M + m = 3 + (−1) = 2.

Bài 2.Giá trị lớn nhất của hàm số y=fx=32xx2 

A.1.

B. 2.

C. 3.

D. 4.

Hướng dẫn giải

Đáp án đúng là: B

Điều kiện: 3 – 2x – x2 ≥ 0  −3 ≤ x ≤ 1.

 y'=x132xx2; y' = 0  −x – 1 = 0  x = −1 (nhận).

Có f(−3) = 0; f(−1) = 2; f(1) = 0.

Vậy max3;1fx=f1=2

Bài 3.Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y=fx=x24x trên đoạn 32; 4

Hướng dẫn giải

Trên đoạn 32; 4, có y'=2x2x24x2=x2+4x2

y' = 0  −x2 + 4 = 0  x = −2 (loại) hoặc x = 2 (nhận).

Có f32=256; f(2) = −4; f(4) = −5.

Vậy max32;4fx=f2=4;min32;4fx=f4=5

Bài 4.Cho hàm số f(x) liên tục trên đoạn [−2; 3] có đồ thị như hình vẽ dưới đây. Gọi m, M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số trên đoạn [−2; 3]. Giá trị của 2m – 3M bằng bao nhiêu?

Giá trị lớn nhất, giá trị nhỏ nhất của hàm số (Lý thuyết Toán lớp 12) | Chân trời sáng tạo

Hướng dẫn giải

Dựa vào đồ thị ta có: m=min2;3fx=3;M=max2;3fx=4

Do đó 2m – 3M = 2.(−3) – 3.4 = −18.

Bài 5.Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa và các suối nước đổ về hồ. Từ lúc 8 giờ sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức: ht=13t3+5t2+24tt>0. Biết rằng cần phải thông báo cho các hộ dân phải di dời trước khi xả nước theo quy định trước 5 giờ. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.

Hướng dẫn giải

Xét hàm số ht=13t3+5t2+24tt>0

Có h'(t) = −t2 + 10t + 24; h'(t) = 0  t = −2 (loại) hoặc t = 12 (nhận).

Bảng biến thiên

Giá trị lớn nhất, giá trị nhỏ nhất của hàm số (Lý thuyết Toán lớp 12) | Chân trời sáng tạo

Dựa vào bảng biến thiên ta thấy để mực nước dâng cao nhất thì phải mất 12 giờ. Do đó phải thông báo cho người dân di dời vào 15 giờ chiều cùng ngày.

Xem thêm các bài tóm tắt lý thuyết Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Đánh giá

0

0 đánh giá