Trong không gian Oxyz, cho hai đường thẳng d: (x + 2)/1 = (y + 3)/2 + (z - 3)/(-2) và d': x = 1 - t, y = -2 + t, z = 2t

136

Với giải Bài 5.47 trang 63 Toán 12 Tập 2 Kết nối tri thức chi tiết trong Bài tập cuối chương 5 trang 61 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài tập cuối chương 5 trang 61

Bài 5.47 trang 63 Toán 12 Tập 2: Trong không gian Oxyz, cho hai đường thẳng d:x+21=y+32+z32 và d': x=1ty=2+tz=2t

a) Xác định vị trí tương đối của hai đường thẳng d và d'.

b) Tính góc giữa d và d'.

Lời giải:

a) Đường thẳng d đi qua A(−2; −3; 3) và có một vectơ chỉ phương là u1=1;2;2

Đường thẳng d' đi qua B(1; −2; 0) và có một vectơ chỉ phương u2=1;1;2

Có AB=3;1;3u1,u2=6;0;3

Có AB.u1,u2=6.3+1.0+3.3=90

Do đó d và d' chéo nhau.

b) Ta có cos(d,d')=cosu1,u2=1.1+2.1+2.21+22+22.12+12+22=354=16

Suy ra (d, d') ≈ 65,9°.

Đánh giá

0

0 đánh giá