Gieo đồng thời hai con xúc xắc cân đối và đồng chất. Gọi A là biến cố “Xuất hiện hai mặt có cùng số chấm”

103

Với giải Hoạt động khám phá 2 trang 70 Toán 12 Tập 2 Chân trời sáng tạo chi tiết trong Bài 1: Xác suất có điều kiện giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 1: Xác suất có điều kiện

Hoạt động khám phá 2 trang 70 Toán 12 Tập 2: Gieo đồng thời hai con xúc xắc cân đối và đồng chất. Gọi A là biến cố “Xuất hiện hai mặt có cùng số chấm”, B là biến cố “Tổng số chấm của hai mặt xuất hiện bằng 8” và C là biến cố “Xuất hiện ít nhất một mặt có 6 chấm”.

a) Tính PABPB và P(A|B).

b) Tính PCAPA và P(C|A).

Lời giải:

Ta có không gian mẫu của phép thử là

Ω = {(i; j): 1 ≤ i ≤ 6, 1 ≤ j ≤ 6} trong đó (i; j) là số chấm xuất hiện lần lượt ở hai con xúc xắc. Suy ra n(Ω) = 36.

a) A ∩ B là biến cố “Xuất hiện hai mặt có cùng số chấm và tổng bằng 8”.

Tập hợp các kết quả thuận lợi cho biến cố A ∩ B là {(4; 4)}. Suy ra n(A ∩ B) = 1.

Do đó PAB=136.

B là biến cố “Tổng số chấm của hai mặt xuất hiện bằng 8”.

Tập hợp các kết quả thuận lợi cho biến cố B là {(2; 6), (3; 5), (4; 4), (5; 3), (6; 2)}.

Suy ra n(B) = 5.

Do đó PB=536.

Vậy PABPB=15.

Trong số 5 kết quả thuận lợi cho biến cố B thì có 1 kết quả thuận lợi cho biến A.

Do đó P(A|B) = 15.

b) C ∩ A là biến cố “Xuất hiện hai mặt có cùng số chấm trong đó có ít nhất một mặt 6 chấm”.

Tập hợp các kết quả thuận lợi cho biến cố C ∩ A là {(6; 6)}. Suy ra n(C ∩ A) = 1.

Do đó PCA=136.

A là biến cố “Xuất hiện hai mặt có cùng số chấm”.

Tập hợp các kết quả thuận lợi cho biến cố A là {(1; 1), (2; 2), (3; 3), (4; 4), (5; 5), (6; 6)}.

Suy ra n(A) = 6. Do đó PA=636=16.

Vậy PCAPA=16.

Trong số 6 kết quả thuận lợi cho biến cố A thì có 1 kết quả thuận lợi cho biến cố C.

Do đó PC|A=16.

Đánh giá

0

0 đánh giá