Hãy giải bài toán trong phần mở đầu bằng cách lập bảng thống kê như trong Ví dụ 2

48

Với giải Luyện tập 1 trang 99 Toán 12 Tập 2 Cánh diều chi tiết trong Bài 2: Công thức xác suất toàn phần. Công thức Bayes giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 2: Công thức xác suất toàn phần. Công thức Bayes

Luyện tập 1 trang 99 Toán 12 Tập 2: Hãy giải bài toán trong phần mở đầu bằng cách lập bảng thống kê như trong Ví dụ 2, biết rằng cả hai nhà máy sản xuất được 10 000 linh kiện.

Lời giải:

Số linh kiện nhà máy I sản xuất ra là: 55% ∙ 10 000 = 5 500 (linh kiện).

Số linh kiện nhà máy II sản xuất ra là: 45% ∙ 10 000 = 4 500 (linh kiện).

Số linh kiện nhà máy I sản xuất ra đạt tiêu chuẩn là: 90% ∙ 5 500 = 4 950 (linh kiện), không đạt tiêu chuẩn là: 5 500 – 4 950 = 550 (linh kiện).

Số linh kiện nhà máy II sản xuất ra đạt tiêu chuẩn là: 87% ∙ 4 500 = 3 915 (linh kiện), không đạt tiêu chuẩn là: 4 500 – 3 915 = 585 (linh kiện).

Từ đó ta có bảng thống kê như sau (đơn vị: linh kiện)

Tiêu chuẩn

Linh kiện

Đạt tiêu chuẩn

Không đạt tiêu chuẩn

Nhà máy I sản xuất

4 950

550

Nhà máy II sản xuất

3 915

585

 

Xét hai biến cố sau:

A: “Linh kiện được chọn ra đạt tiêu chuẩn”;

B: “Linh kiện được chọn ra do nhà máy I sản xuất”.

Khi đó, ta có:

P(B) = 0,55; P(B¯ ) = 1 – P(B) = 1 – 0,55 = 0,45; P(A | B) = 0,9; P(A | B¯ ) = 0,87.

Áp dụng công thức xác suất toàn phần, ta có:

P(A) = P(B) ∙ P(A | B) + P( B¯) ∙ P(A | B¯ ) = 0,55 ∙ 0,9 + 0,45 ∙ 0,87 = 0,8865.

Vậy xác suất để linh kiện được lấy ra đạt tiêu chuẩn bằng 0,8865.

Đánh giá

0

0 đánh giá