Dây chuyền lắp ráp ô tô điện gồm các linh kiện là sản phẩm do hai nhà máy sản xuất ra

178

 

Với giải Câu hỏi khởi động trang 97 Toán 12 Tập 2 Cánh diều chi tiết trong Bài 2: Công thức xác suất toàn phần. Công thức Bayes giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 2: Công thức xác suất toàn phần. Công thức Bayes

Câu hỏi khởi động trang 97 Toán 12 Tập 2: Dây chuyền lắp ráp ô tô điện gồm các linh kiện là sản phẩm do hai nhà máy sản xuất ra. Số linh kiện nhà máy I sản xuất ra chiếm 55% tổng số linh kiện, số linh kiện nhà máy II sản xuất ra chiếm 45% tổng số linh kiện; tỉ lệ linh kiện đạt tiêu chuẩn của nhà máy I là 90%, của nhà máy II là 87%. Lấy ngẫu nhiên ra một linh kiện từ dây chuyền lắp ráp đó để kiểm tra.

Xác suất để linh kiện được lấy ra đạt tiêu chuẩn là bao nhiêu?

Lời giải:

Sau bài học này, ta giải quyết được bài toán trên như sau:

Xét hai biến cố sau:

A: “Linh kiện được chọn ra đạt tiêu chuẩn”;

B: “Linh kiện được chọn ra do nhà máy I sản xuất”.

Khi đó, ta có:

P(B) = 0,55; P( B¯) = 1 – P(B) = 1 – 0,55 = 0,45;

P(A | B) = 0,9; P(A | B¯ ) = 0,87.

Áp dụng công thức xác suất toàn phần, ta có:

P(A) = P(B) ∙ P(A | B) + P(B¯ ) ∙ P(A | B¯ ) = 0,55 ∙ 0,9 + 0,45 ∙ 0,87 = 0,8865.

Vậy xác suất để linh kiện được lấy ra đạt tiêu chuẩn bằng 0,8865.

Đánh giá

0

0 đánh giá