Với giải Bài 1.14 trang 19 Toán 12 Tập 1 Kết nối tri thức chi tiết trong Bài 2: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:
Giải bài tập Toán 12 Bài 2: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số
Bài 1.14 trang 19 Toán 12 Tập 1: Một nhà sản xuất muốn thiết kế một chiếc hộp có dạng hình hộp chữ nhật không có nắp, có đáy là hình vuông và diện tích bề mặt bằng như Hình 1.17. Tìm các kích thước của chiếc hộp sao cho thể tích của hộp là lớn nhất.
Lời giải:
Hình hộp trên có độ dài cạnh đáy là x (cm, ) và chiều cao là h (cm, )
Diện tích bề mặt của hình hộp là nên
Thể tích của hình hộp là:
Ta có: (do )
Bảng biến thiên:
Do đó, thể tích của hình hộp là lớn nhất khi độ dài cạnh đáy cm
Khi đó, chiều cao của hình hộp là: .
Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
Xem thêm các bài giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
Bài 1. Tính đơn điệu và cực trị của hàm số
Bài 2. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Bài 3. Đường tiệm cận của đồ thị hàm số
Bài 4. Khảo sát sự biến thiên và vẽ đồ thị của hàm số
Bài 5. Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn